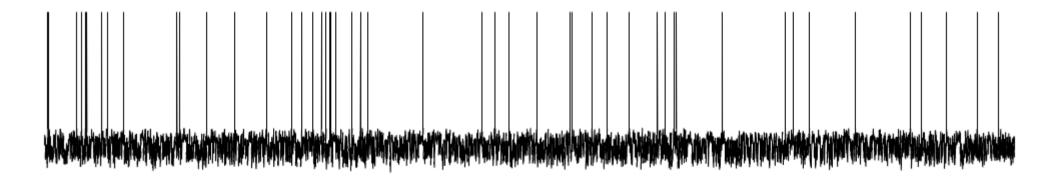
Learning in spiking neural networks

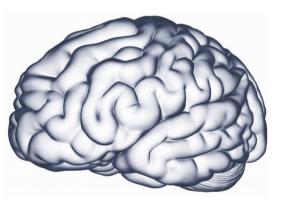
Friedemann Zenke Surya Ganguli @ Stanford University

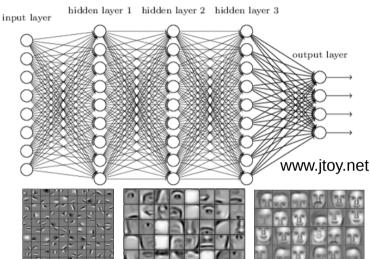
https://fzenke.net



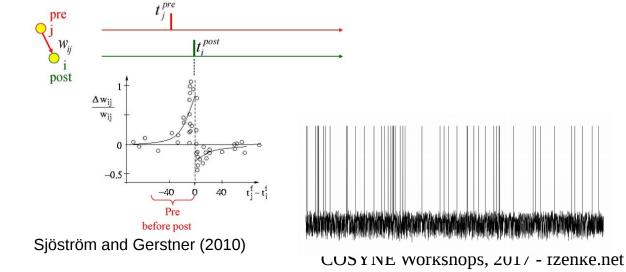
Opposite motivations & approaches to understanding neural networks

- Spikes
- STDP
- Biological plausibility
- Unsupervised learning





- MNIST, ImageNet, ...
- Classification performance
- Impressive stuff



Comp. Neuroscience vs Machine Learning

- Goals Capture experimental data
 - Understand computation in the brain

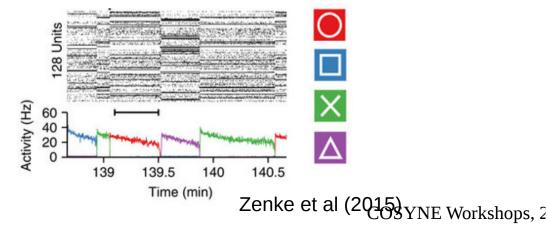
Architecture

- Spiking neurons (sparse connect.)
- Continuous time
- Non-differentiable

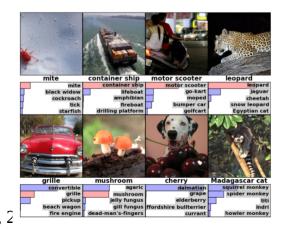
Learning

- Local learning rules
- Unsupervised/reinforcement learning
- Neuromodulators
- Non-stationary data
- Continual learning (learning and recall at the same time)

Performance



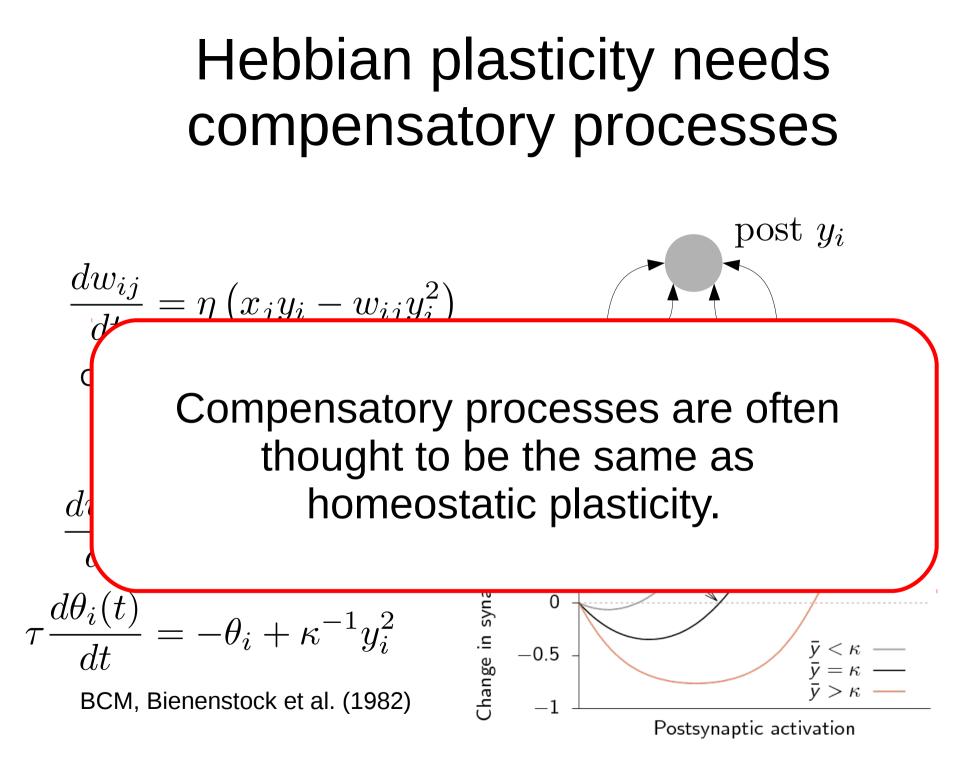
- Maximize performance on given task
- Rate-based neurons (dense)
- Discrete time
- Differentiable
- Training
 - Global objective
 - Stochastic gradient descent
 - Stationary training data
 - Separation training/recall



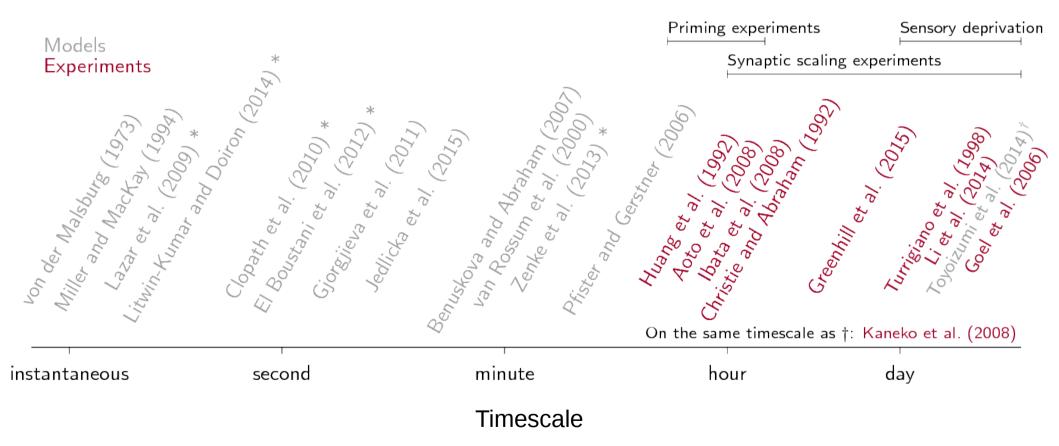
Krizhevsky et al. (2012)

Outline

- Part 1: Review of work on rapid compensatory processes
- Part 2: Supervised learning in deterministic multi-layer spiking neural networks starting from a cost function

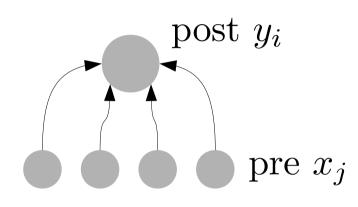


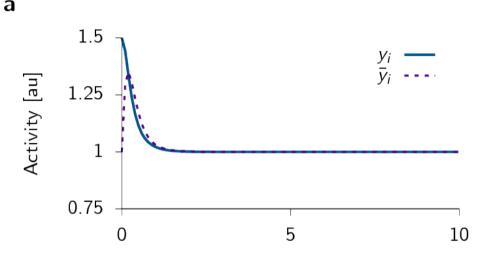
The temporal paradox of Hebbian and homeostatic plasticity



Zenke & Gerstner (2017) Phil. Trans. R. Soc. B COSYNE Workshops, 2017 - fzenke.net

Why Hebbian plasticity needs **rapid** compensatory processes

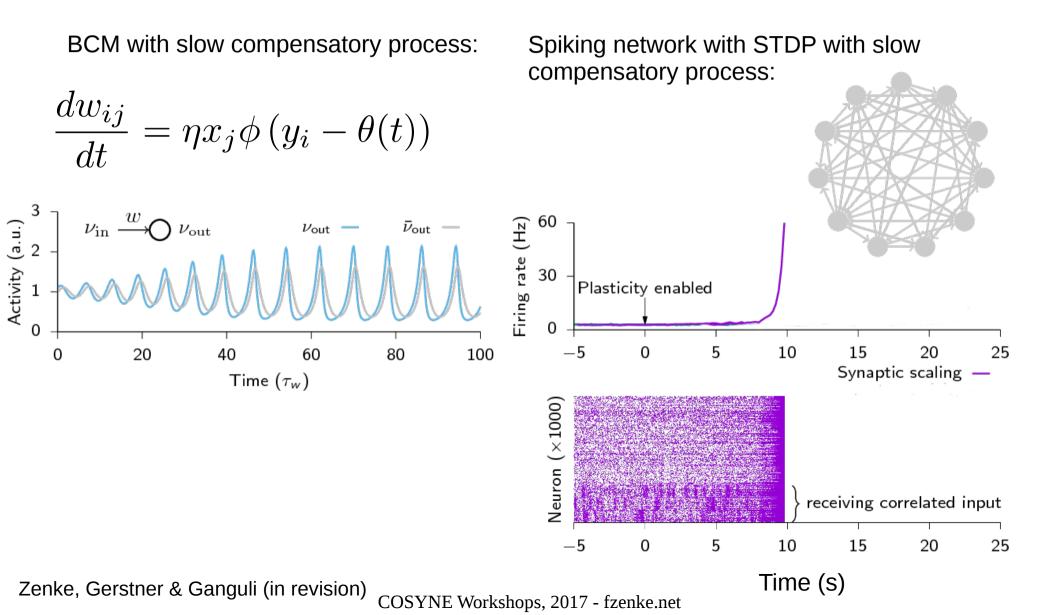




$$\frac{dw_{ij}}{dt} = \eta \left(x_j y_i - w_{ij} \bar{y}_i^2 \right)$$

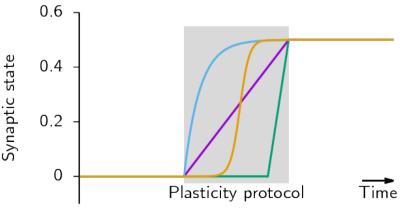
Zenke & Gerstner (2017) Phil. Trans. R. Soc. B COSYNE Workshops, 2017 - fzenke.net

Bio inspired plasticity needs **rapid** compensatory processes

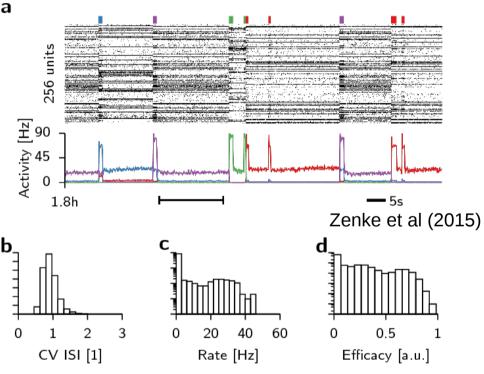


Bio inspired learning rules often lack rapid compensatory processes

- Bio inspired learning rules (bottom up)
 - Often unstable
 - Under constrained
 - Add rapid compensatory processes for stability
- Functionally motivated rules (top down)
 - Derived from objective function
 - Stability/rapid comp. processes built in



Stable latching dynamics of cell assemblies in plastic spiking net



- Attractor states = fixed points of plasticity
- Negative feedback terms in the learning rule

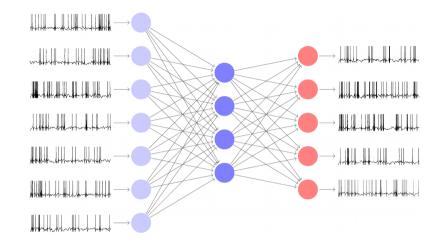
More on this: Zenke & Gerstner (2017) Phil. Trans. R. Soc. B Zenke, Gerstner & Ganguli (in revision) COSYNE Workshop præprints onkezenke.net

Outline

- Part 1: Review of work on rapid compensatory processes
- Part 2: Supervised learning in deterministic multi-layer spiking neural networks starting from a cost function

Desiderata

- Spiking network which solves complex task
- Use spike timing
- Algorithm which could be implemented by a biological synapse

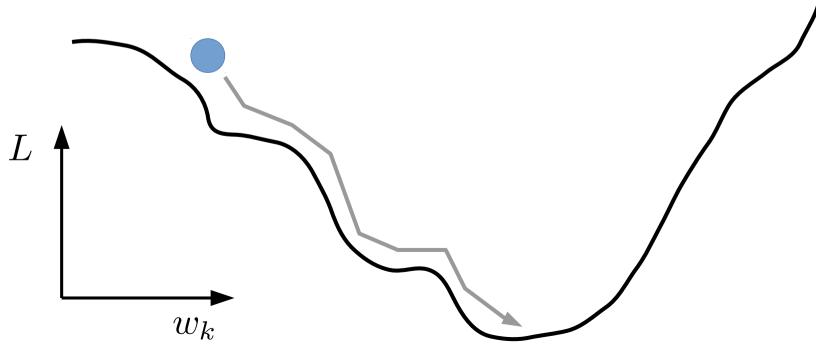


Aim

Get spiking networks to do something interesting, by starting from an objective function approach.

"Smooth" machine learning approach

- Start with suitable cost function L
- Take the derivative w.r.t. to parameters
- Do gradient descent $\frac{\partial w_k}{\partial t} \propto -\frac{\partial L}{\partial w_k}$

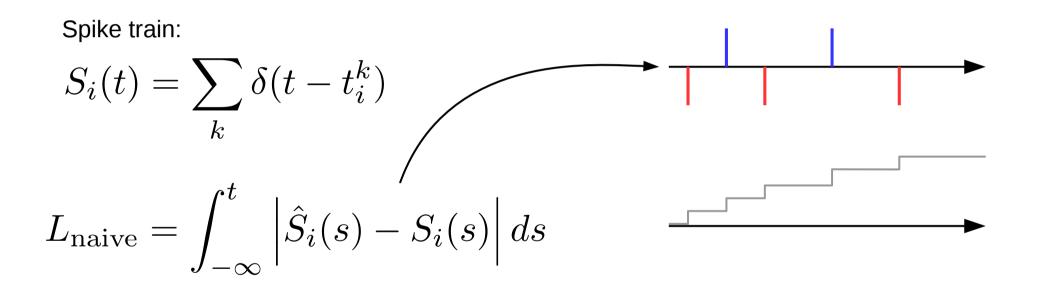


COSYNE Workshops, 2017 - fzenke.net

Problems with ML approach for spiking neural networks

- Suitable cost function for spike trains
- Spikes are inherently non-differentiable
- Spiking neurons have history dependence due to spike reset
- Credit assignment in hidden layers

Which spike train metric to use



van Rossum distance:

$$L = \int_{-\infty}^{t} \left(\epsilon * \hat{S}_i(s) - \epsilon * S_i(s)\right)^2 ds$$

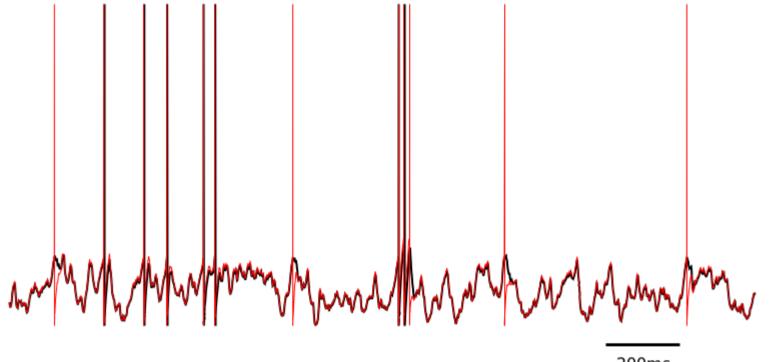
Gardner & Grunig 2015

Derivative of a spike train is zero almost everywhere

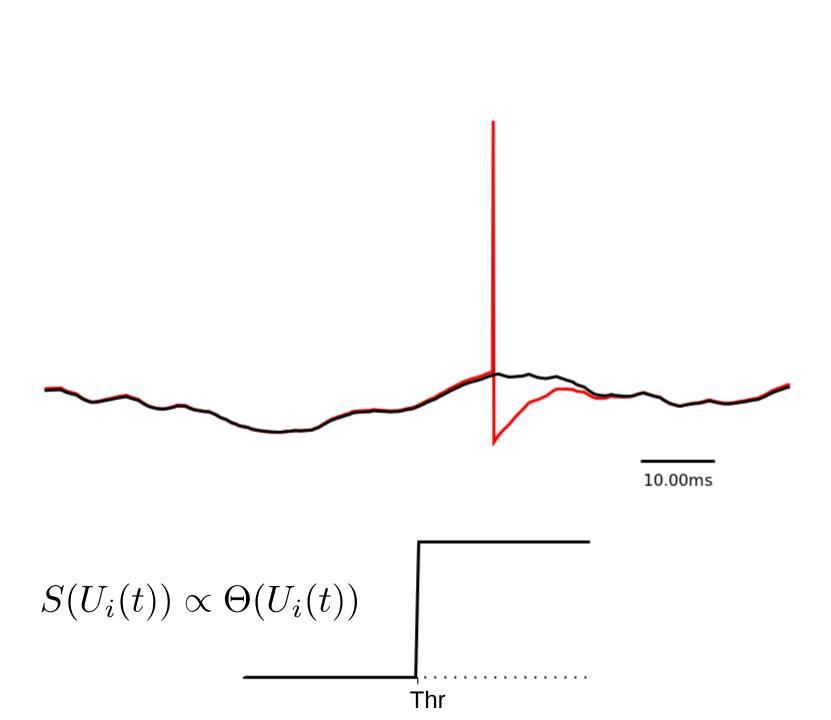
$$L = \frac{1}{2} \int_{-\infty}^{t} \left(\epsilon * \left(\hat{S}_i(s) - S_i(s) \right) \right)^2 ds$$

 $-\frac{\partial L}{\partial w_k} = \int_{-\infty}^t \epsilon * \left(\hat{S}_i(s) - S_i(s)\right) \epsilon * \frac{\partial S_i(t)}{\partial w_k} ds$

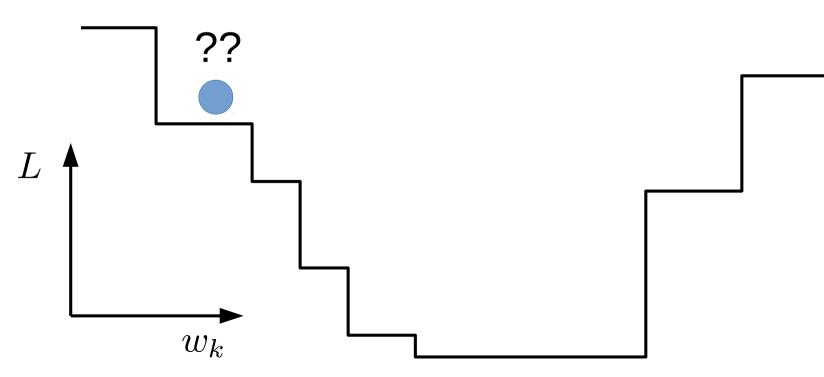
200ms



200ms

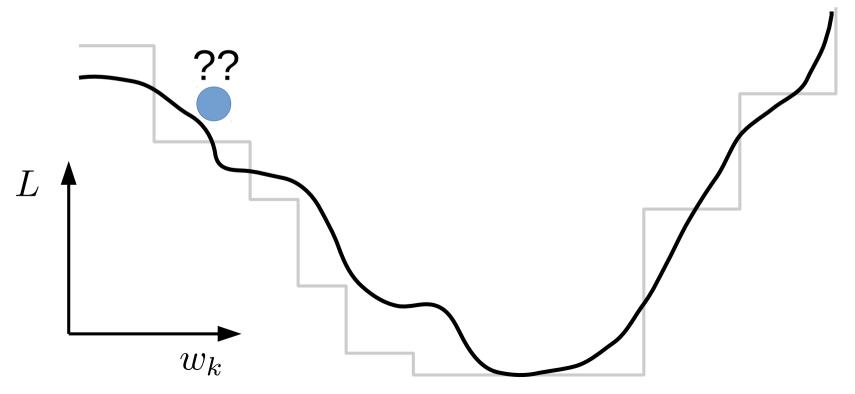


Optimization landscape in spiking neural networks flat everywhere

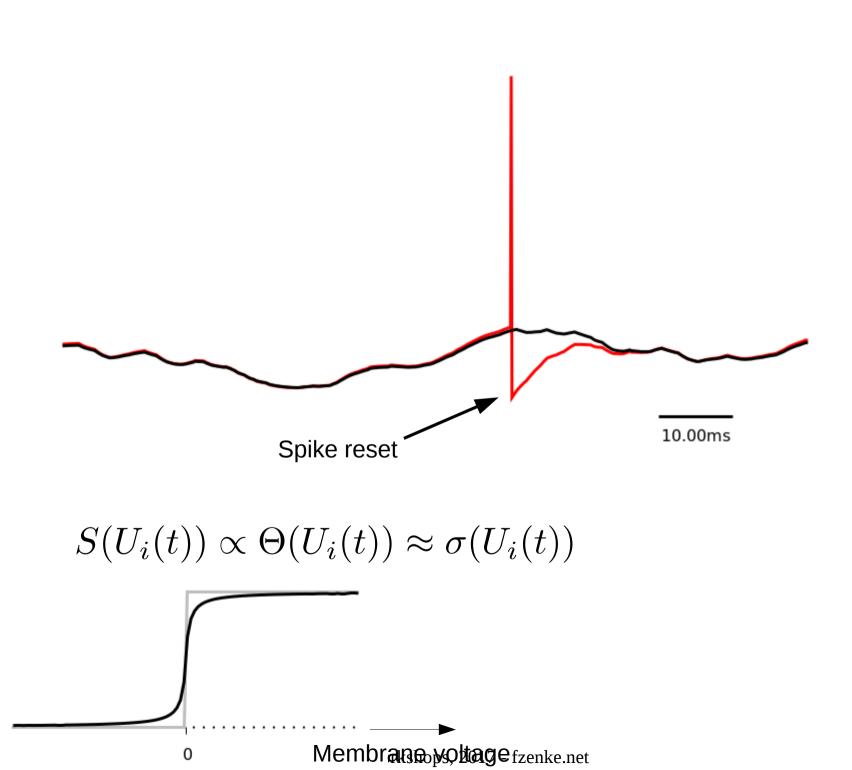


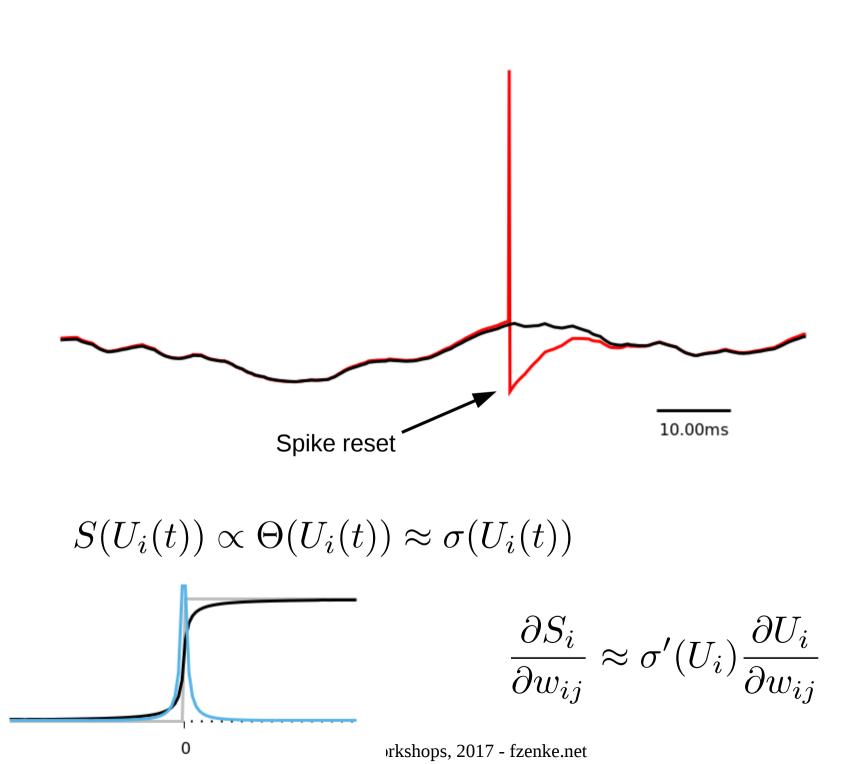
Common approach: Smooth out the optimization landscape

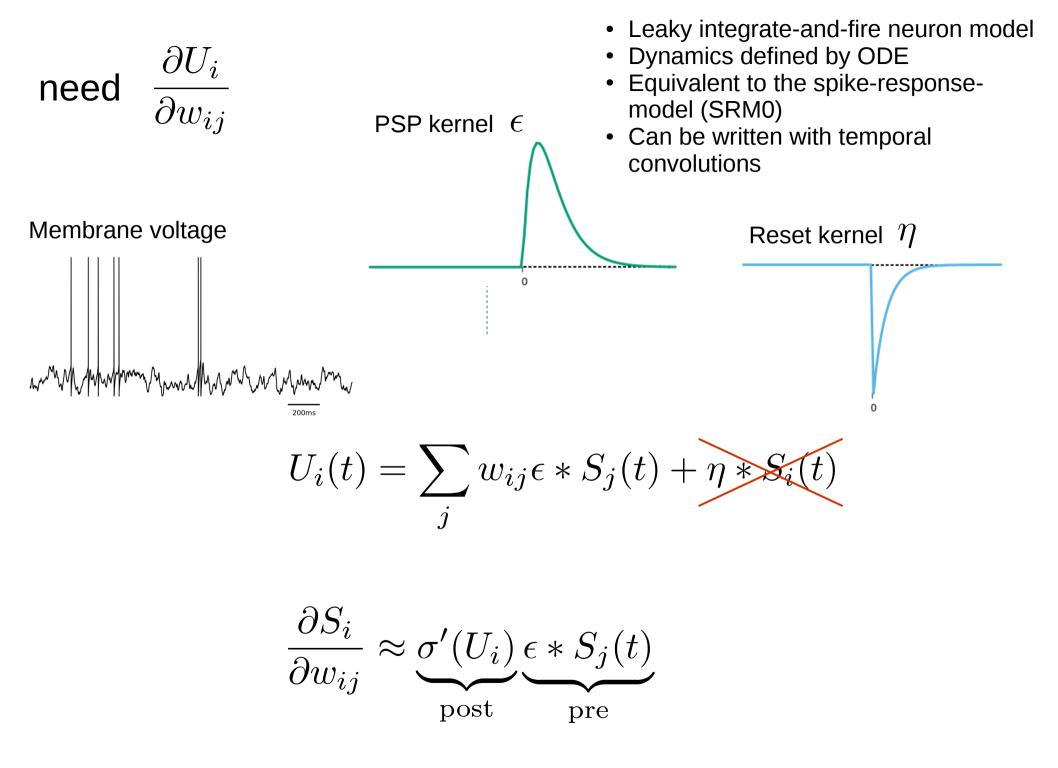
- Probabilistic model / add noise
- Non-zero approximations to the gradient



COSYNE Workshops, 2017 - fzenke.net

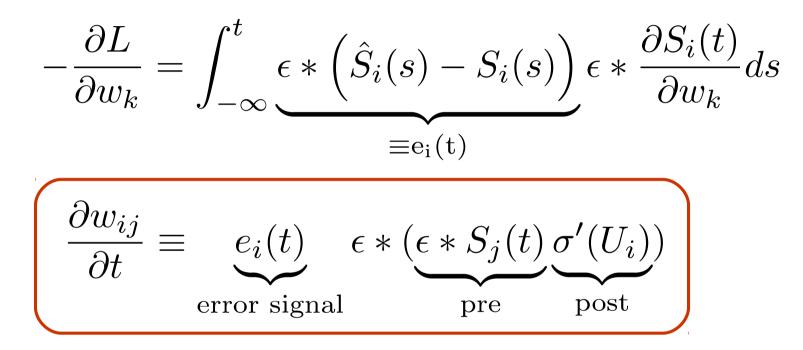






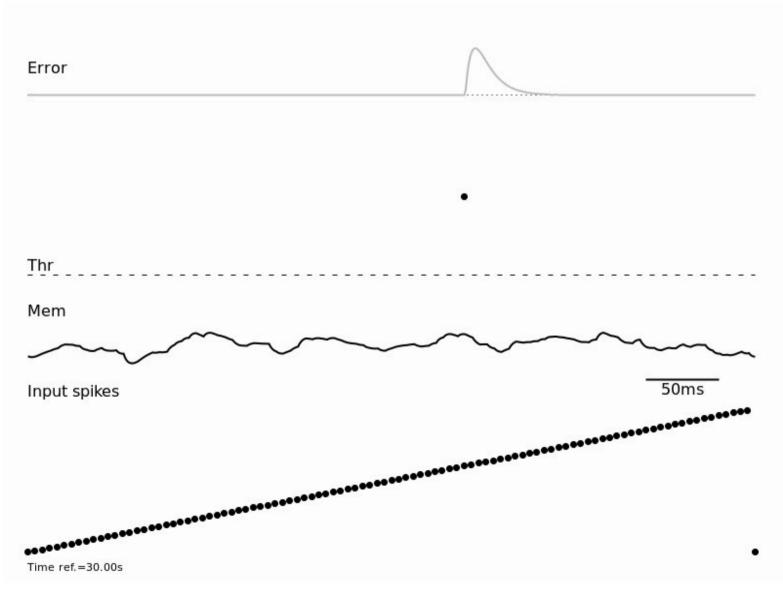
COSYNE Workshops, 2017 - fzenke.net

The update equation can be interpreted as a three factor rule



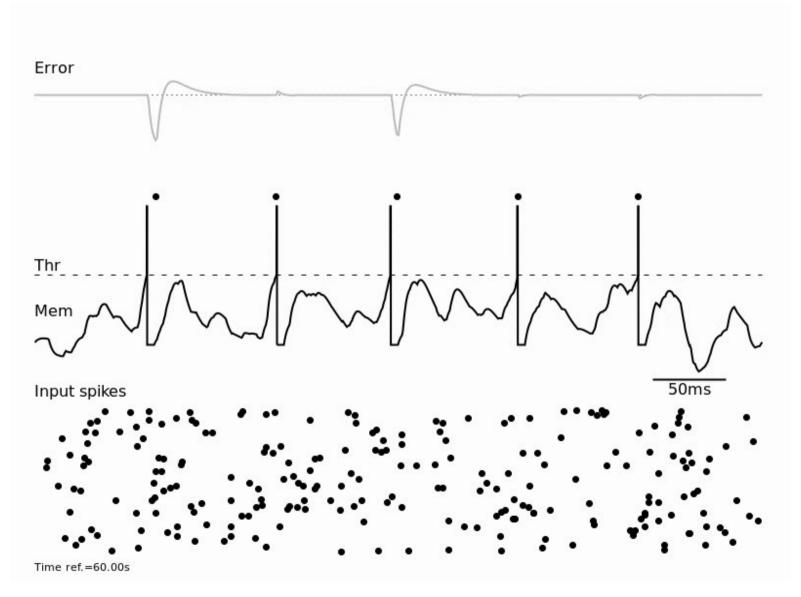
- Three factor rule
- Non-linear Hebbian
- Voltage-based
- Think of outer convolution as eligibility trace

Sequential inputs \rightarrow single spike



COSYNE Workshops, 2017 - fzenke.net

Learning of output spike train



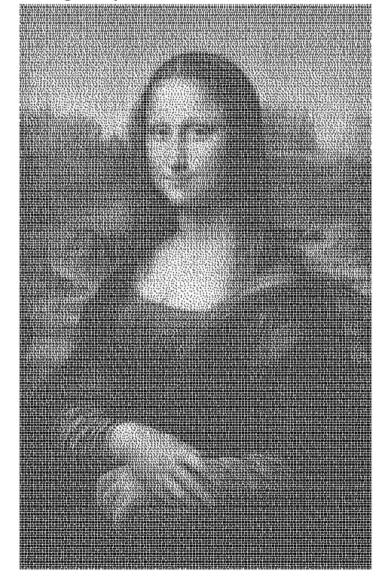
COSYNE Workshops, 2017 - fzenke.net

Training many outputs in parallel

1000 inputs Time Unit

500 output neurons

Target spike trains

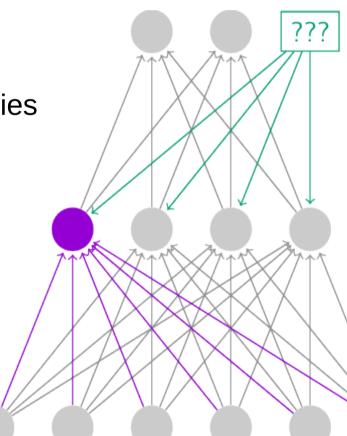


Can we take this to multiple layers?

$$\frac{\partial w_{ij}}{\partial t} \equiv \sum_{k} e_k(t) \epsilon * \left[w_{ki} \epsilon * \left(\epsilon * S_j(t) \sigma'(U_i) \right) \sigma'(U_k) \right]$$

Problems:

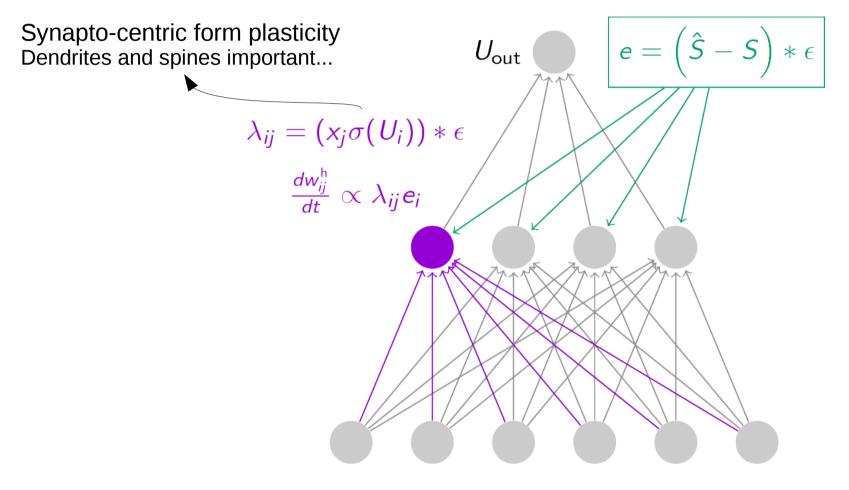
- Symmetric weights
- Downstream activities



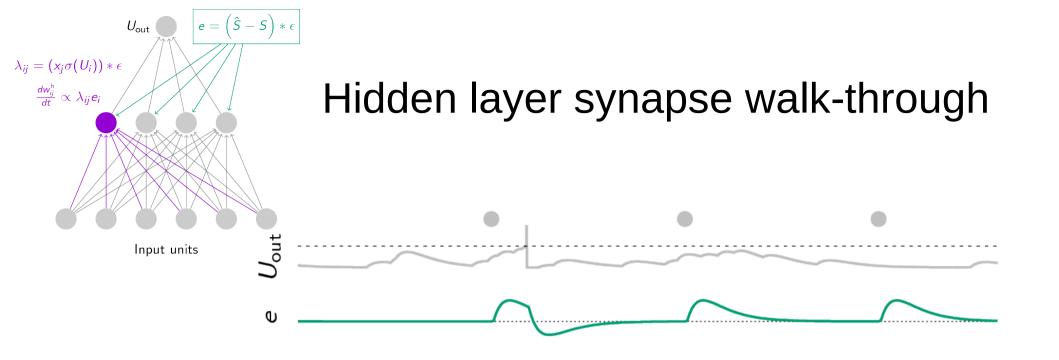
Random feedback Lillicrap et al. (2014, 2016) Guergiuev et al. (2016) Baldi et al. (2016) Samadi et al. (2017)

Straight-through estim. Hinton (2012) Bengio et al. (2013)

Can we use random feedback to take this to multiple layers?

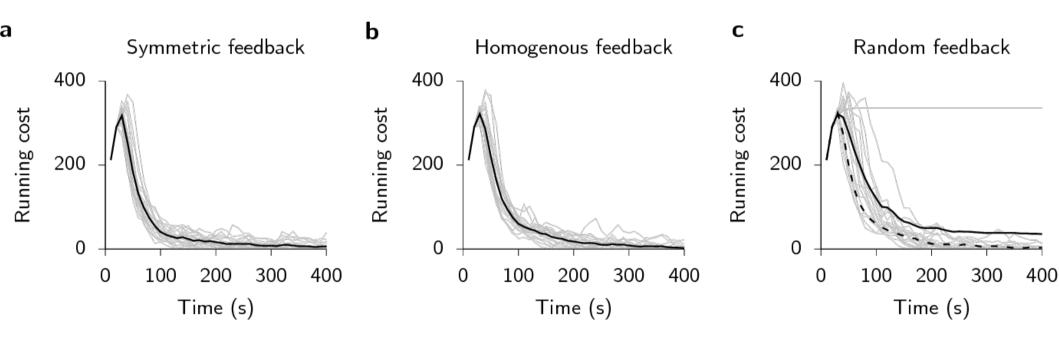


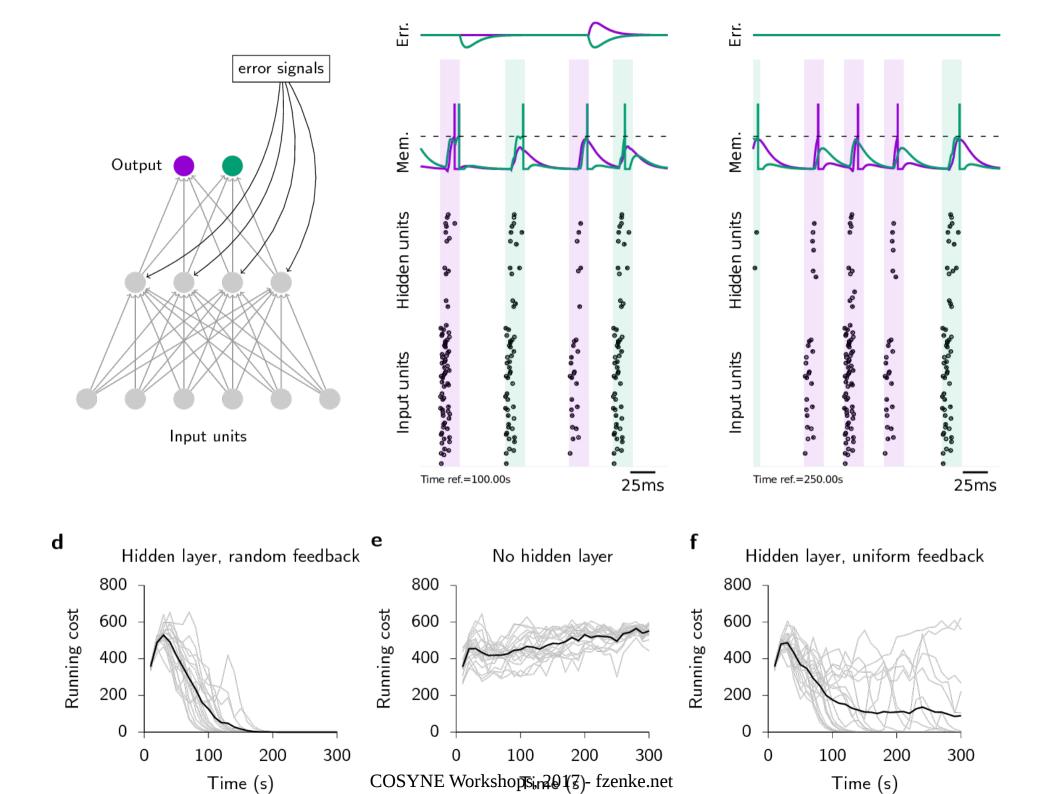
Input units

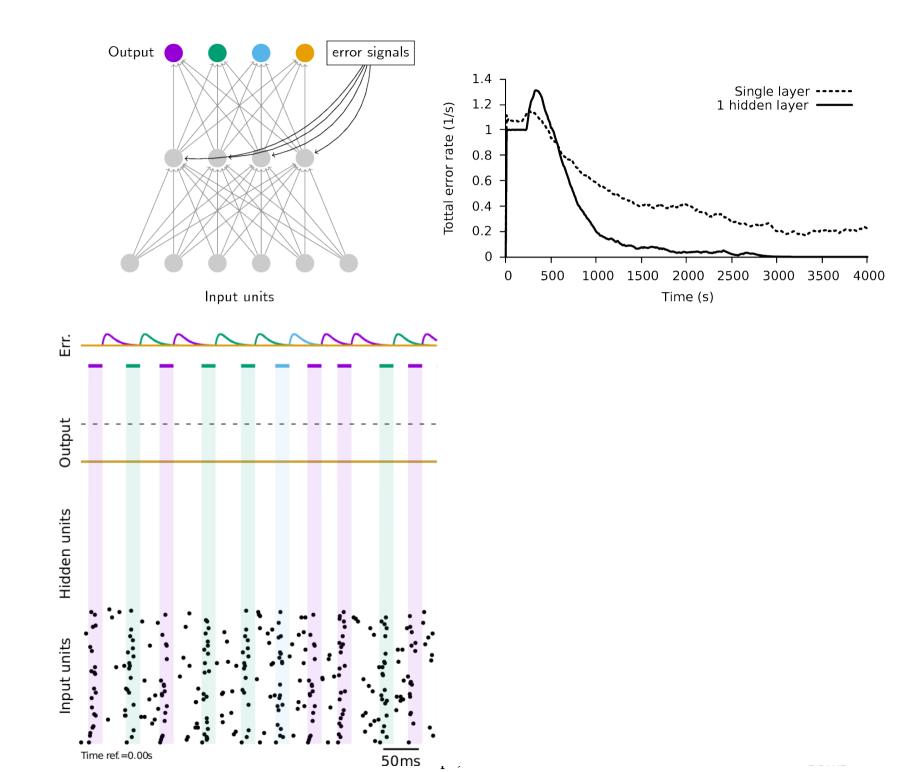


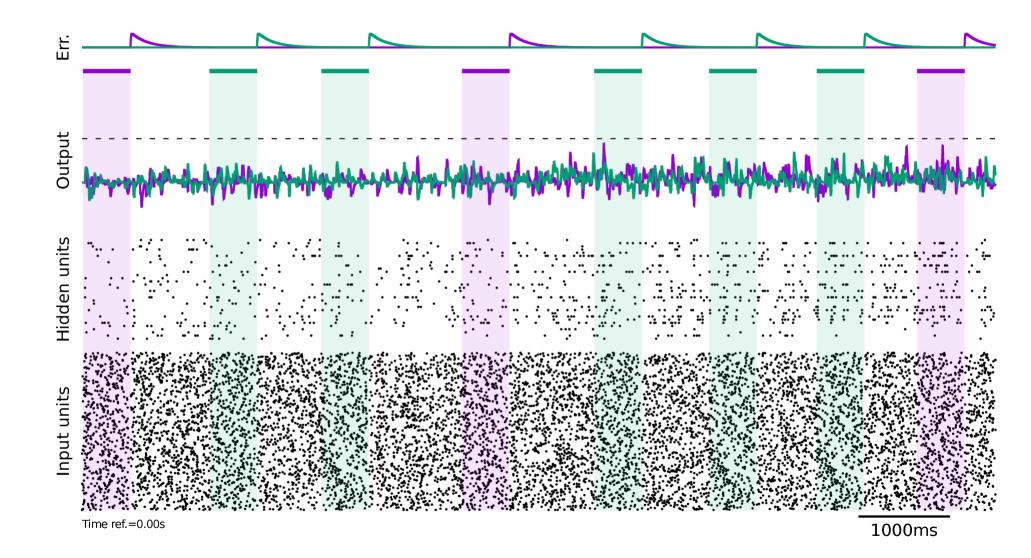
Random feedback, one hidden layer

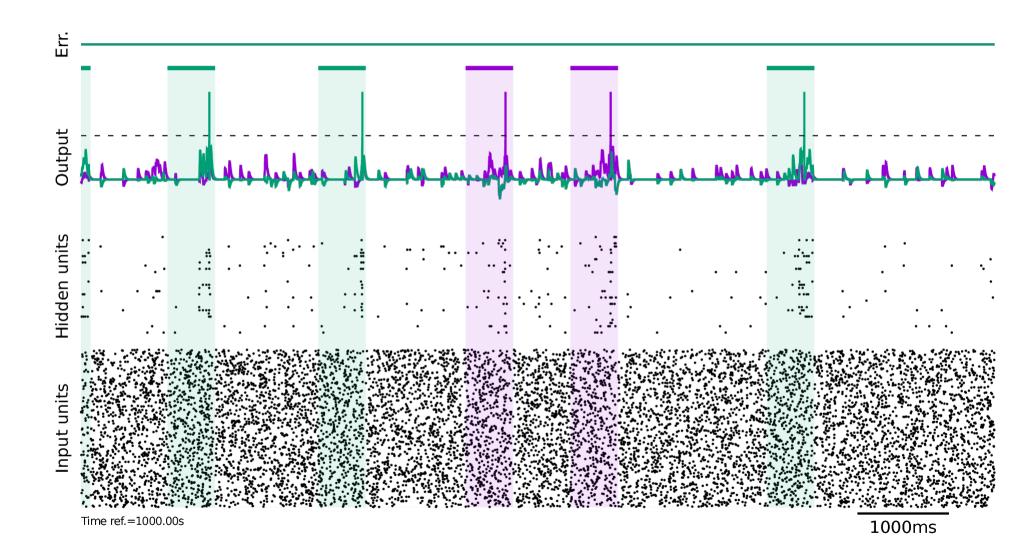
Random feedback does fine



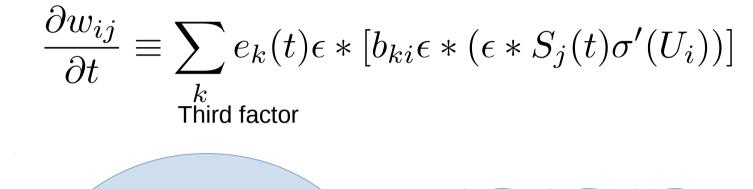


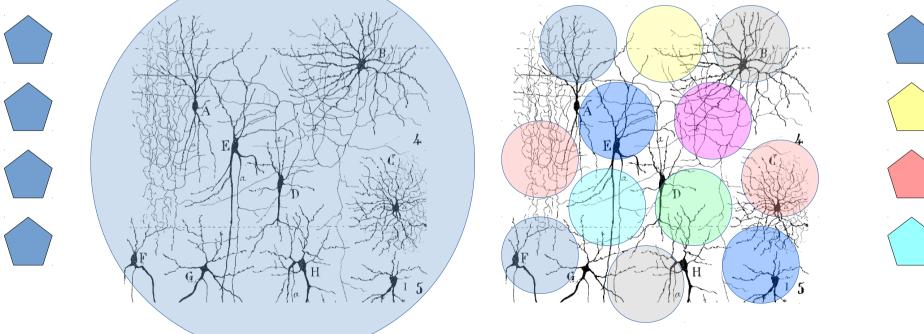






Think of heterogeneity of third factor





Global third factor COSYNE Workshops, 2017 - fzenke.net

Neurons by Ramon y Cajal

Summary

- Started from cost function approach
- Method to teach spiking nets to solve non-trivial temporally coded problems
- Learning rule has a simple interpretation in a biological context

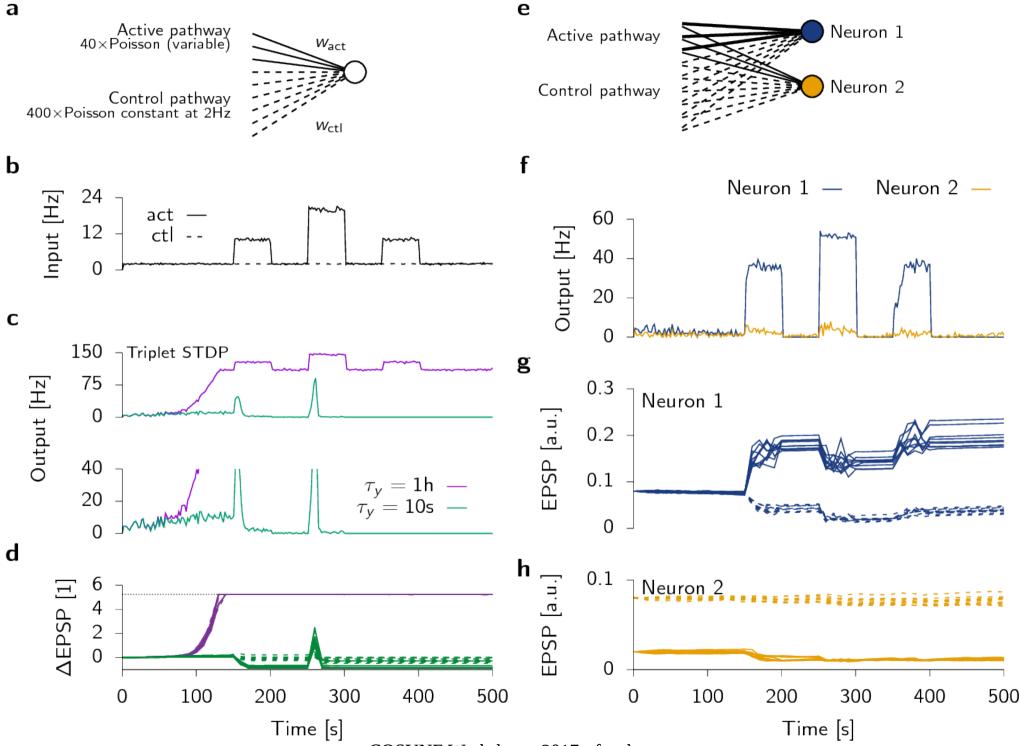
Thanks

Surya Ganguli and the gang

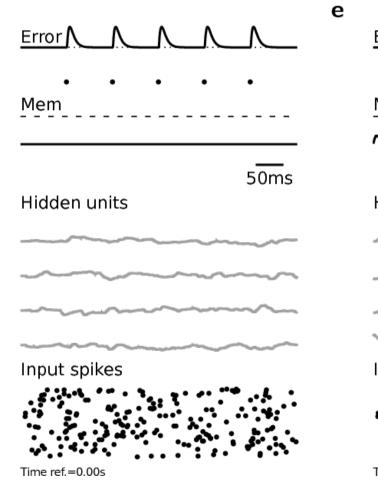
- Kiah Hardcastle
- Sarah Harvey
- Subhy Lahiri
- Niru Maheswaranathan
- Lane McIntosh
- Sam Ocko
- Ben Poole
- Chris Stock
- Alex Williams

Funding:

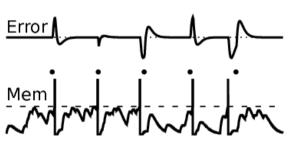
Swiss National Science Foundation



Random feedback, one hidden layer



d

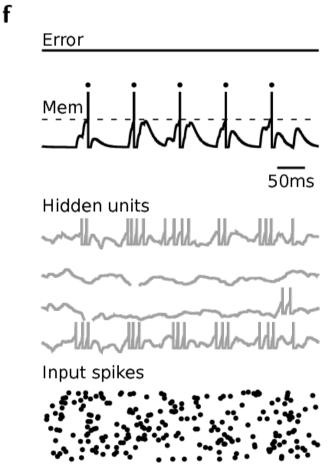


50ms

Hidden units

Input spikes

Time ref.=40.00s



Time ref.=250.00s