
LATEX TikZposter

Rapid spatiotemporal coding in trained multi-layer and recurrent spiking neural networks

Friedemann Zenke & Tim P. Vogels

Rapid spatiotemporal coding in trained multi-layer and recurrent spiking neural networks

Friedemann Zenke & Tim P. Vogels

fzenke.net: poster, code, & more...

Aims & Approach

Aim: Build functional spiking neural network models that
1. Use spike timing

2. Compute rapidly

3. Exhibit sparse spiking

Approach: We train spiking neural networks (SNNs) using
surrogate gradients to solve a set of classification problems re-
quiring rapid spatiotemporal processing.

Understanding spiking neural
networks as RNNs

Input neurons

Output neuron

0

1

U

0

I

 0 0.5 1

Time (s)

Update equations:

I
(1)
i [n + 1] = αI

(1)
i [n]︸ ︷︷ ︸

exp. current decay

+
∑
j

WijS
(0)
j [n]︸ ︷︷ ︸

feed-forward input

+
∑
k

VikS
(1)
k [n]︸ ︷︷ ︸

recurrent input

U
(1)
i [n + 1] = βU

(1)
i [n]︸ ︷︷ ︸

leak

+ I
(1)
i [n]︸ ︷︷ ︸
input

−Si[n]︸︷︷︸
reset

S
(1)
i [n] = Θ

(
U

(1)
i [n]− 1

)
where Θ is the Heaviside function.

Computational graph of a SNN with current-based neurons:

S (0)[0]

I (1)[0]

U(1)[0]

S (1)[0]

S (0)[1]

I (1)[1]

U(1)[1]

S (1)[1]

S (0)[2]

I (1)[2]

U(1)[2]

S (1)[2]

S (0)[3]

I (1)[3]

U(1)[3]

S (1)[3]

S (0)[4]

I (1)[4]

U(1)[4]

S (1)[4]

W (1)

α

β

W (2)

−1

V (1)

W (1)

α

β

W (2)

−1

V (1)

W (1)

α

β

W (2)

−1

V (1)

W (1)

α

β

W (2)

−1

V (1)

Time

Take-home: A SNN is formally equivalent to a recurrent neu-
ral network (RNN) with specific recurrent connectivity (e.g. leak
terms). Thus gradients can be computed, for instance, using
backpropagation through time (BPTT). See Neftci et al. [1] for
details.

Learning with surrogate gradients

Problem: Gradients of SNNs include derivatives of spikes

dS
(1)
i

dU
= Θ′ (U) =

{
∞ U = 0

0 otherwise

Solution: We introduce a surrogate gradient which approxi-
mates the original problem [1].

Parameter space

Lo
ss 0

1

0

1

0 0.5 1 1.5

N
on

lin
ea

rit
y Step Θ(U)

Fast sigmoid
Exponential

Square+

N
or

m
al

iz
ed

de
riv

at
iv

e

Membrane potential U (a.u.)

Suprathreshold

Unlike Huh and Sejnowski [2], spikes in the forward pass are
not affected and remain binary. But also see [1, 3–5] which
all use variations of the above idea.

Synthetic data: Random manifolds

Problem: Simulating SNNs is computationally demanding and training them on large
datasets remains challenging. Thus we use synthetic datasets for exploration.

Solution: We generate synthetic data by sampling from smooth random manifolds. These
datasets can be kept small, yet difficult (e.g., non-linearly separable). Importantly, this
allows to study generalization.

1 2 3

2

4

6

8

D

SVM (linear) test (10 classes)

1 2 3

2

4

6

8

SVM (polynomial kernel) test

1 2 3

2

4

6

8

Difference

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Smoothness 1/α, manifold dimension D, and number of classes n are freely adjustable
which allows us to generate compact datasets with varying degrees of difficulty.

Random manifolds → spikes

To study temporal coding, we interpret the embedding space coordinates from a smooth
random manifold as firing times. Different manifolds correspond to different classes. In
the example below we use a mapping in which each neuron fires precisely one spike. Here
we plot spike rasters continually sampled along the intrinsic coordinate x (D = 1).

x = 0.00 x = 0.02 x = 0.04 x = 0.06 x = 0.08 x = 0.10

10ms x = 0.98 x = 0.96 x = 0.94 x = 0.92 x = 0.90

Supervised learning setup

Output and supervised loss: As readout layer we use leaky integrators which do not
spike. For training a cross-entropy loss function is defined on this readout by taking the
maximum along time (see also [6]).

Before training

Input layer

Readout layer

In
pu

t

10ms

Hi
dd

en
Re

ad
ou

t

After training

0.00

0.25

0.50

Lo
ss

Dashed: Test

0 20 40
Epoch

0.6

0.8

1.0

Ac
cu

ra
cy

nh = 0
nh = 1
nh = 2

In
pu

t

10ms

Hi
dd

en
Re

ad
ou

t

Input paradigms: We used three distinct input paradigms. (i) Synthetic data with
structure imposed from smooth random manifolds. (ii) Standard vision benchmarks [7]
converted to a first spike latency code. (iii) Spiking data from a silicon cochlea dataset [8].

Reset — Back-propagate or not?

0 10 20 30 40 50
Epoch

0

1

2

Lo
ss

Synthetic task (n = 10, D = 1, = 2)

Prop. through reset Ignore reset
0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

Chance level
nh = 1, = 0.001
nh = 1, = 0.01
nh = 2, = 0.001
nh = 2, = 0.01

With the number of hidden layers nh and the η learnig rate.

Take-home: Surrogate gradient descent is more efficient if
the voltage reset is ignored when propagating gradients.

Performance on benchmarks

MNIST and Fashion MNIST [7]: Input: Each input neuron either remains silent or
spikes once. Output: Softmax over maximum value of eacha readout neuron. nTIDIG-
ITS: Input: Spoken digits processed by silicon chochlea [8]. Multiple spikes are possible.
Output: Softmax readout group at the end of each trial.

0.0 0.1
Time (s)

200

400

600

0.00 0.05
Time (s)

0

200

400

600

800

0

50

Un
it

Label: 1

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Time (s)

0

50

Un
it

Label: 5

0 1 2 3
Number of hidden layers

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

MNIST

SNN (train)
SNN (test)
MLP (test)

0 1 2 3
Number of hidden layers

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Fashion MNIST

0 1 2 3 4
Number of hidden layers

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

nTIDIGITS

Chance
RNN/GRU (test)

Rapid computation & sparse firing

In
pu

t

10ms

Hi
dd

en
Re

ad
ou

t

Pred: 7 Pred: 2 Pred: 1 Pred: 0 Pred: 4

101 102 103

Avg. number of hidden layer spikes

0.96

0.98

1.00

Ac
cu

ra
cy

20 40 60 80
Decision latency (ms)

103

104

105 mean=23.22ms

Summary & Outlook

• Surrogate gradients can be used to train SNNs to perform
rapid spatiotemporal processing

• SNNs accurately solve classification problems with a small
number of spikes

•This opens the door to use SNNs as versatile tools (cf. [9])

[1] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. arXiv:1901.09948 [cs, q-bio], January 2019.

[2] Dongsung Huh and Terrence J Sejnowski. NeurIPS, pages 1440–1450, 2018.

[3] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy,

Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo

di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner, and Dharmendra S. Modha. Proc

Natl Acad Sci U S A, 113(41):11441–11446, October 2016.

[4] Friedemann Zenke and Surya Ganguli. Neural Computation, 30(6):1514–1541, April 2018.

[5] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. NeurIPS,

pages 795–805, 2018.

[6] Robert Gütig and Haim Sompolinsky. Nat Neurosci, 9(3):420–428, March 2006.

[7] Han Xiao, Kashif Rasul, and Roland Vollgraf. arXiv:1708.07747 [cs, stat], August 2017.

[8] Jithendar Anumula, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu. Front. Neurosci., 12, 2018.

[9] Omri Barak. Current Opinion in Neurobiology, 46:1–6, October 2017.

https://fzenke.net/index.php/2019/02/13/cosyne2019/

