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Aims & Approach

Aim: Build functional spiking neural network models that
1. Use spike timing

2. Compute rapidly

3. Exhibit sparse spiking

Approach: We train spiking neural networks (SNNs) using
surrogate gradients to solve a set of classification problems re-
quiring rapid spatiotemporal processing.

Understanding spiking neural
networks as RNNs
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Update equations:
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where Θ is the Heaviside function.

Computational graph of a SNN with current-based neurons:
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Take-home: A SNN is formally equivalent to a recurrent neu-
ral network (RNN) with specific recurrent connectivity (e.g. leak
terms). Thus gradients can be computed, for instance, using
backpropagation through time (BPTT). See Neftci et al. [1] for
details.

Learning with surrogate gradients

Problem: Gradients of SNNs include derivatives of spikes

dS
(1)
i

dU
= Θ′ (U) =

{
∞ U = 0

0 otherwise

Solution: We introduce a surrogate gradient which approxi-
mates the original problem [1].

Parameter space
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Unlike Huh and Sejnowski [2], spikes in the forward pass are
not affected and remain binary. But also see [1, 3–5] which
all use variations of the above idea.

Synthetic data: Random manifolds

Problem: Simulating SNNs is computationally demanding and training them on large
datasets remains challenging. Thus we use synthetic datasets for exploration.

Solution: We generate synthetic data by sampling from smooth random manifolds. These
datasets can be kept small, yet difficult (e.g., non-linearly separable). Importantly, this
allows to study generalization.
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Smoothness 1/α, manifold dimension D, and number of classes n are freely adjustable
which allows us to generate compact datasets with varying degrees of difficulty.

Random manifolds → spikes

To study temporal coding, we interpret the embedding space coordinates from a smooth
random manifold as firing times. Different manifolds correspond to different classes. In
the example below we use a mapping in which each neuron fires precisely one spike. Here
we plot spike rasters continually sampled along the intrinsic coordinate x (D = 1).

x = 0.00 x = 0.02 x = 0.04 x = 0.06 x = 0.08 x = 0.10

10ms x = 0.98 x = 0.96 x = 0.94 x = 0.92 x = 0.90

Supervised learning setup

Output and supervised loss: As readout layer we use leaky integrators which do not
spike. For training a cross-entropy loss function is defined on this readout by taking the
maximum along time (see also [6]).
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Input paradigms: We used three distinct input paradigms. (i) Synthetic data with
structure imposed from smooth random manifolds. (ii) Standard vision benchmarks [7]
converted to a first spike latency code. (iii) Spiking data from a silicon cochlea dataset [8].

Reset — Back-propagate or not?
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With the number of hidden layers nh and the η learnig rate.

Take-home: Surrogate gradient descent is more efficient if
the voltage reset is ignored when propagating gradients.

Performance on benchmarks

MNIST and Fashion MNIST [7]: Input: Each input neuron either remains silent or
spikes once. Output: Softmax over maximum value of eacha readout neuron. nTIDIG-
ITS: Input: Spoken digits processed by silicon chochlea [8]. Multiple spikes are possible.
Output: Softmax readout group at the end of each trial.
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Summary & Outlook

• Surrogate gradients can be used to train SNNs to perform
rapid spatiotemporal processing

• SNNs accurately solve classification problems with a small
number of spikes

•This opens the door to use SNNs as versatile tools (cf. [9])
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