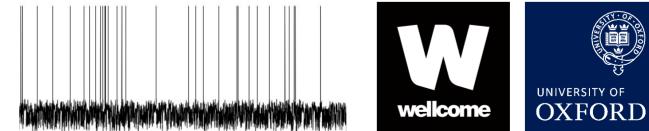
Building functional spiking neural networks using surrogate gradients

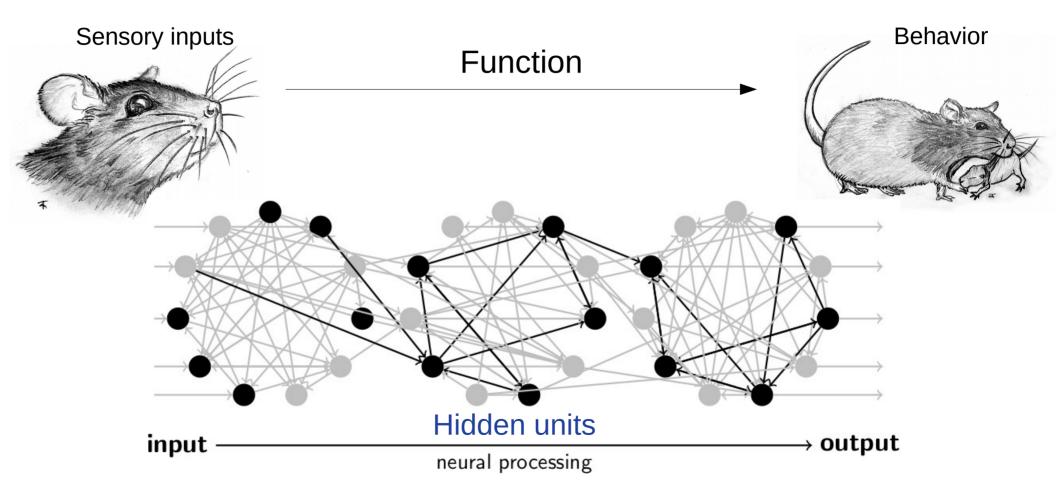
Friedemann Zenke

https://zenkelab.org

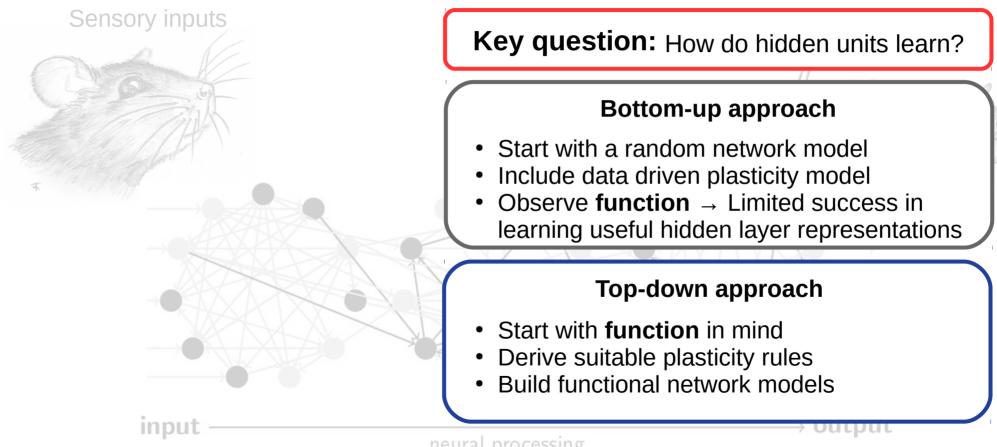
Friedrich Miescher Institute for Biomedical Research



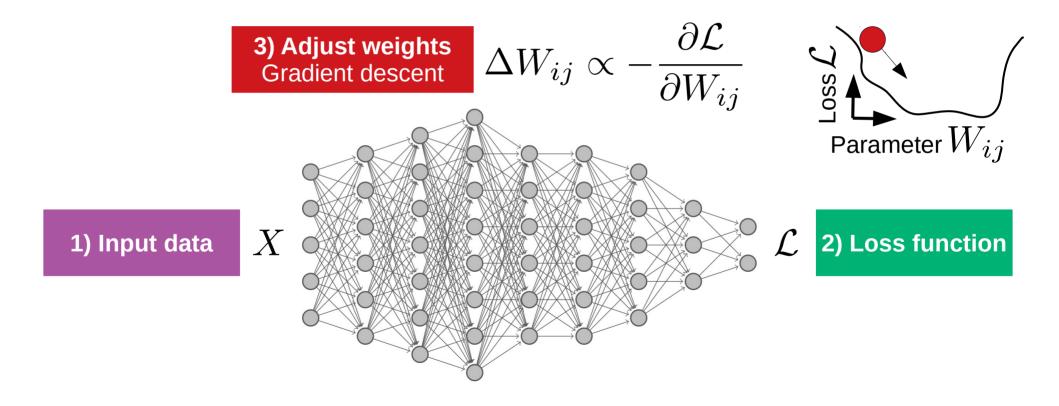
Animals process information using neural networks



Animals process information using neural networks



Deep learning provides a useful framework



Deep neural networks implement functions They "learn", but they don't spike

Algorithmic question: How to compute the gradient?

Conceptual question: Which functions are learned?

2) Loss function

1989 The recent excitement about neural networks

Francis Crick

The remarkable properties of some recent computer algorithms for neural networks seemed to promise a fresh approach to understanding the computational properties of the brain. Unfortunately most of these neural nets are unrealistic in important respects.

"Unrealistic in important respects"

- Non-locality of learning rules (a.k.a. the weight transport problem)
- Graded activation functions vs spikes

The more recent excitement about (deep) neural networks

 $\Delta W_{ij} \propto (\mathrm{pre}_j) f(\mathrm{post}_i) (\mathrm{feedback}_i)$

"Unrealistic in important respects"

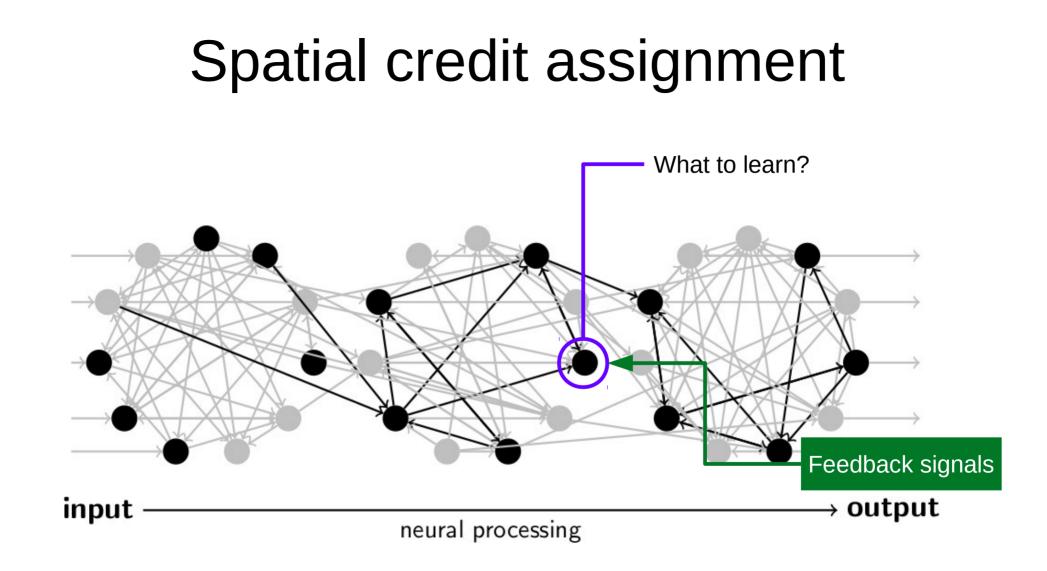
pre

post

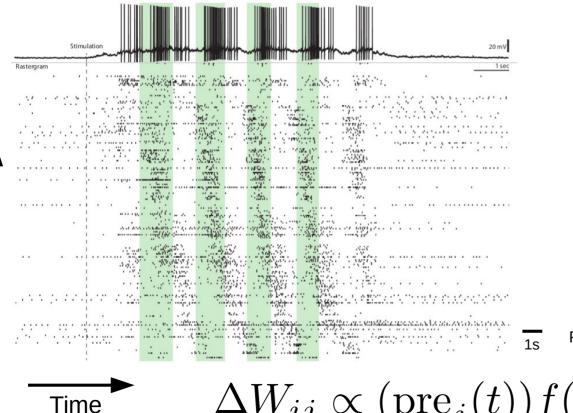
- Non-locality of learning rules (a.k.a. the weight transport problem)
- Graded activation functions vs spikes

Plausible vector-valued feedback!

- Lillicrap et al. (2016)
- Nøkland (2016)
- Guerguiev et al. (2017)
- Scellier & Bengio (2017)
- Whittington & Bogacz (2017)
- Sacramento et al. (2018)
- Pozzi et al. (2018)



Neural networks use spikes to process temporal information



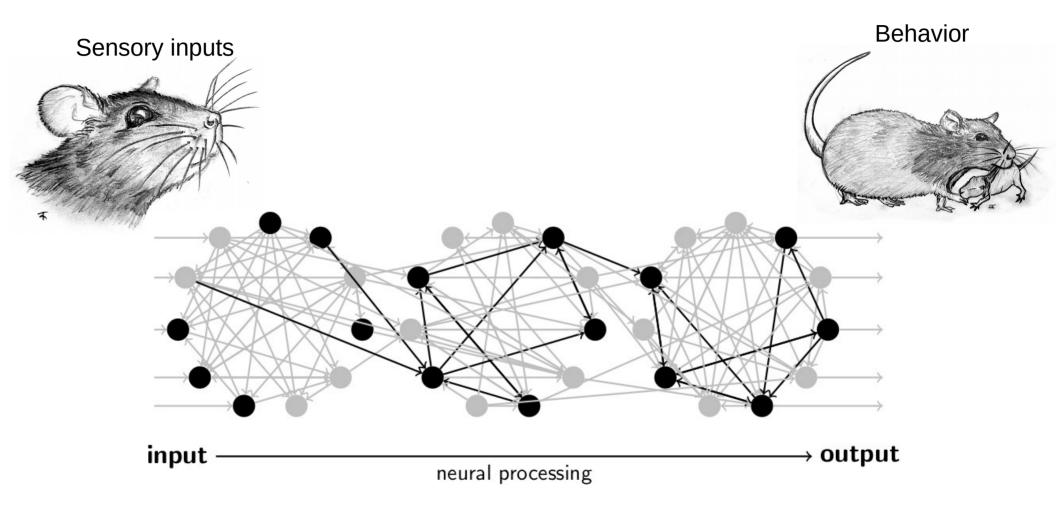
Petersen & Berg (2016)

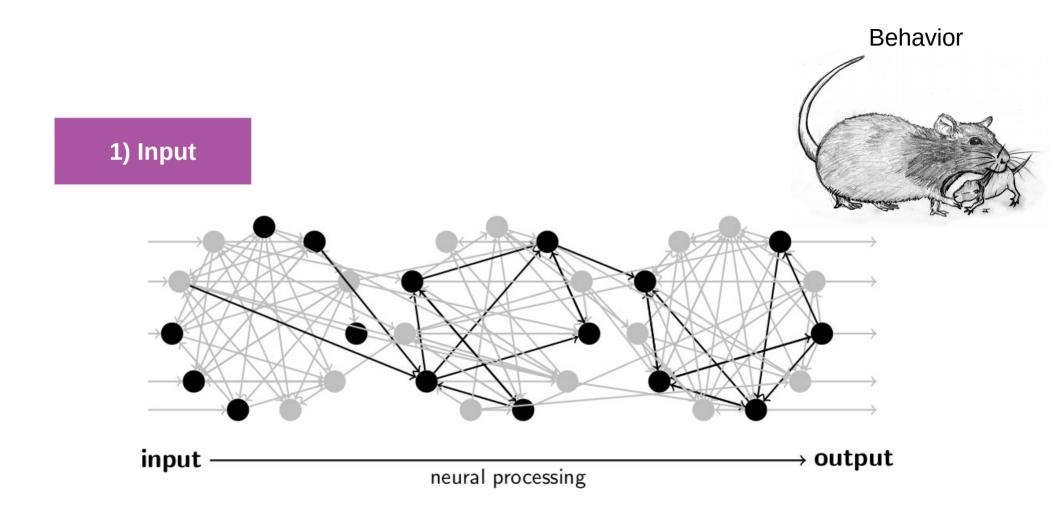
 $\Delta W_{ij} \propto (\operatorname{pre}_i(t)) f(\operatorname{post}_i(t)) (\operatorname{feedback}_i(t))$

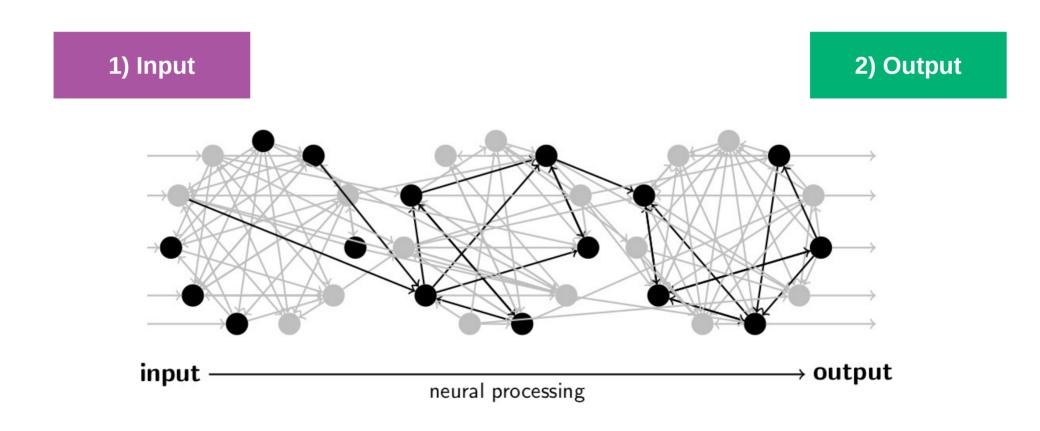
Veurons

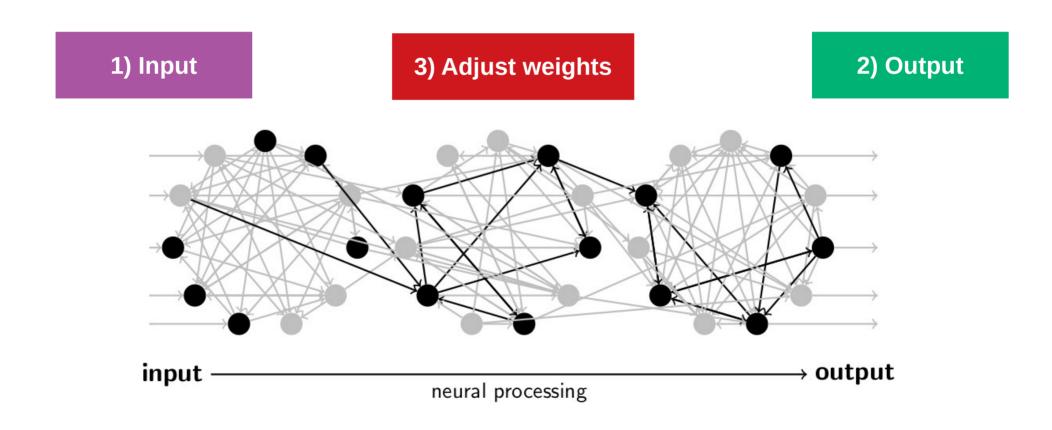
Outline

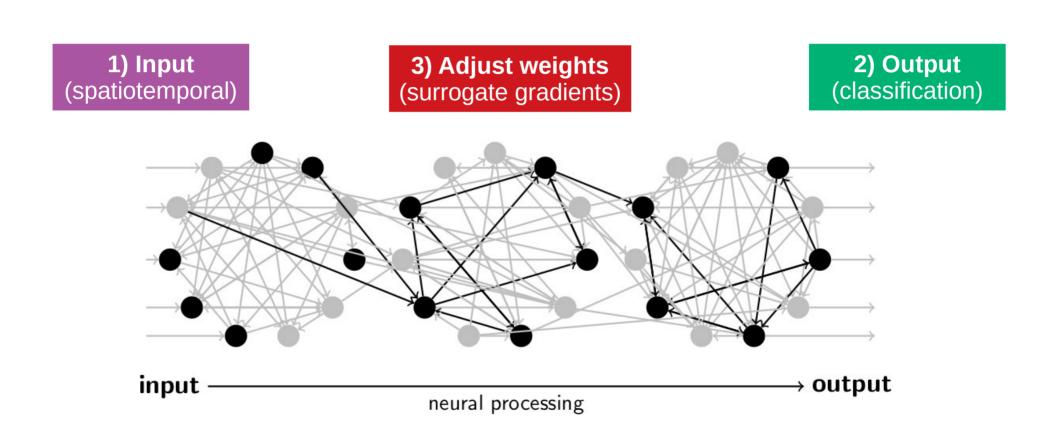
- Aim: Solve temporal tasks with spiking networks
- **Problem:** Spike \rightarrow ill defined derivative
- Solution: Surrogate gradients
- A look at: Robustness, performance For a bio-plausible learning rule see Zenke & Ganguli (2018)



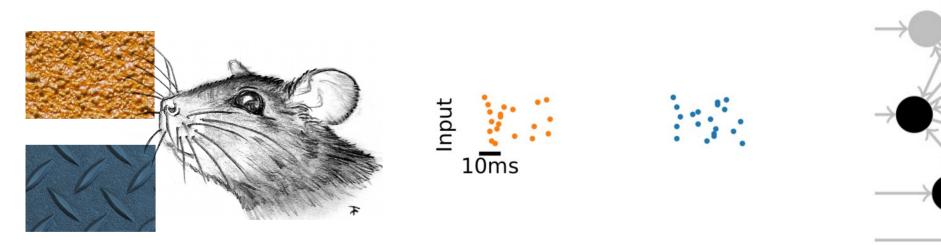




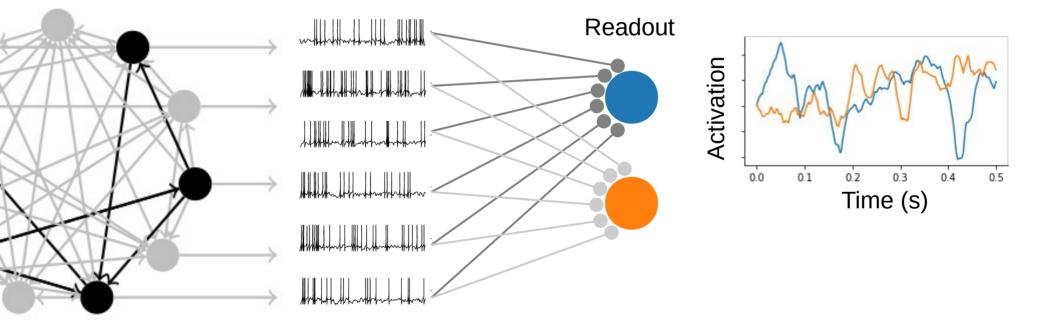




Input: Spatiotemporal spike patterns

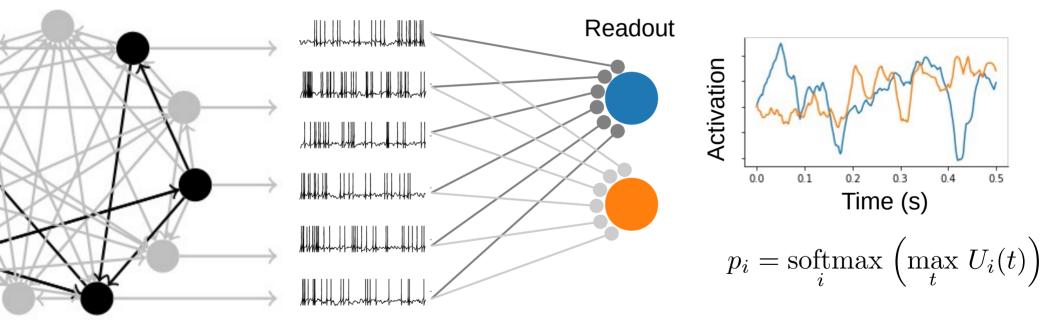


Output: Linear combination of filtered output spike trains



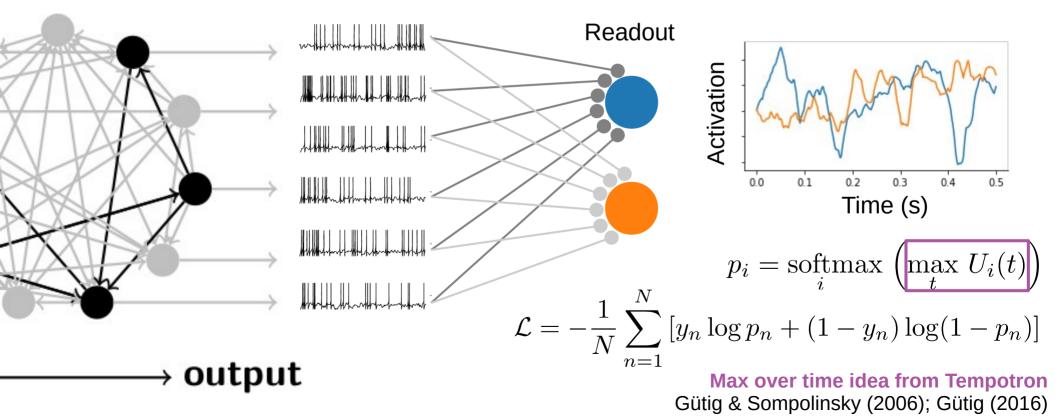
→ output

Output: Linear combination of filtered output spike trains

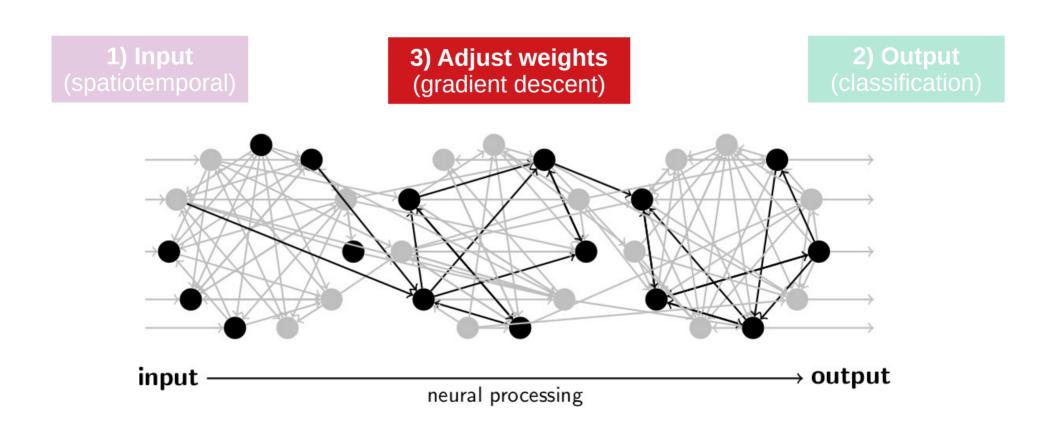


> output

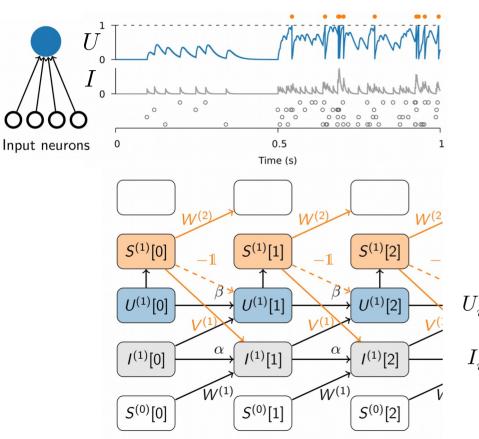
Output: Linear combination of filtered output spike trains



Towards spiking network models which compute



Important insight: Spiking neural networks are binary RNNs with specific intrinsic recurrence



Time

- Can be trained using BPTT or RTRL
- Several groups have realized this:
 - Esser, Merolla, Arthur, Cassidy, Appuswamy, Andreopoulos, Berg, McKinstry, Melano, Barch, et al. (2016)
 - Zenke & Ganguli (2018)
 - Huh & Sejnowski (2018)
 - Shrestha & Orchard (2018)
 - Bellec, Salaj, Subramoney, Legenstein, and Maass (2018)
 - Neftci, Mostafa, & Zenke (2019)

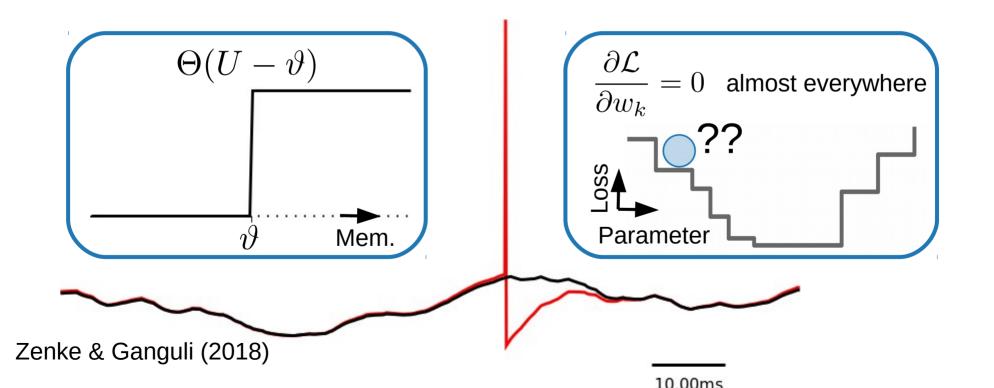
$$S_{i}^{(1)}[n] = \Theta\left(U_{i}^{(1)}[n] - \vartheta\right) \qquad \text{Problem}$$

$$S_{i}^{(1)}[n+1] = \beta U_{i}^{(1)}[n] + I_{i}^{(1)}[n] - S_{i}[n]$$

$$S_{i}^{(1)}[n+1] = \underbrace{\alpha I_{i}^{(1)}[n]}_{\text{exp. current decay}} + \underbrace{\sum_{j} W_{ij} S_{j}^{(0)}[n]}_{\text{feed-forward input}}$$

Neftci, Mostafa, & Zenke (in press)

Problem: The derivative of a spike train vanishes almost everywhere



An **awesome problem** & a history of struggle

Option 1: Noise injection. Pfister, Toyoizumi, Barber & Gerstner (2006) Gardner, Sporea & Grüning (2015)

Option 2: Differentiate firing times. Bohte, Kok, & Poutre (2002), Gütig & Sompolinski (2006), Gütig (2016), Mostafa (2018)

Option 3: Make spikes differentiable. Huh & Sejnowski (2018) **Today:** Surrogate gradients. Bohte (2011), Zenke & Ganguli (2018), Shrestha & Orchard (2018), Bellec, Salaj, Subramoney, Legenstein, and Maass (2018) Neftci, Mostafa, & Zenke (2019)

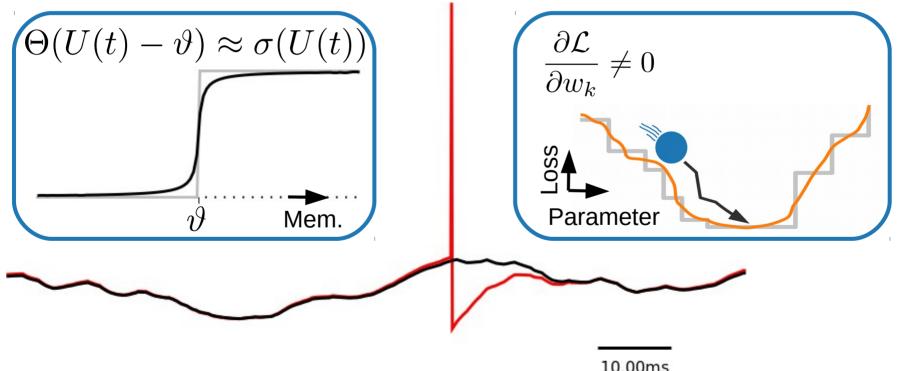
In ML: "Straight-through estimators" Bengio et al. (2013)

Option 4: Force hidden units "on target". Gilra & Gerstner (2017), Nicola & Clopath (2017)

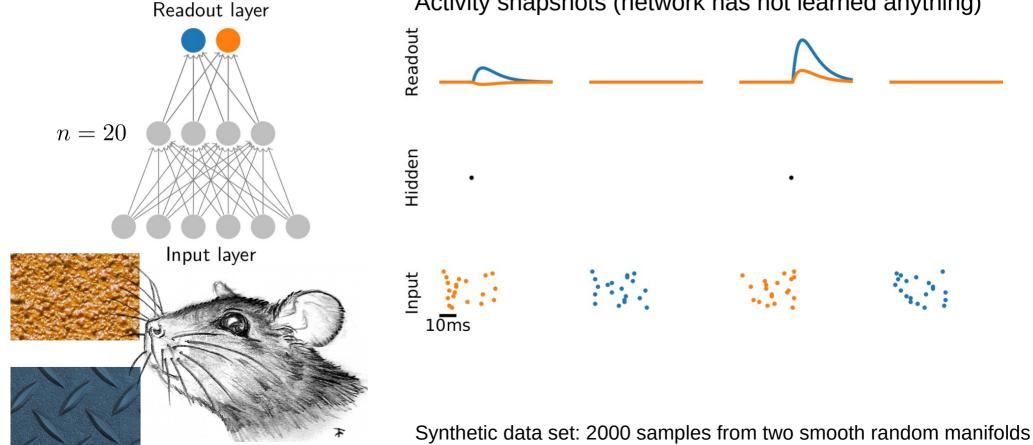
Many more: e.g. firing-rate approaches Hunsberger & Eliasmith (2015), Lee et al. (2016), ...

10.00ms

Today: Surrogate gradients. Bohte (2011), Zenke & Ganguli (2018), Shrestha & Orchard (2018), Bellec, Salaj, Subramoney, Legenstein, and Maass (2018) Neftci, Mostafa, & Zenke (2019)

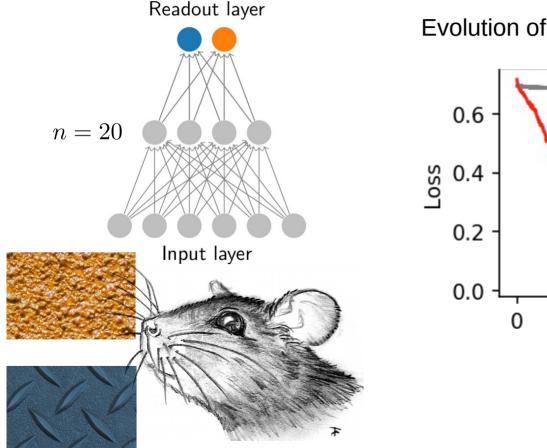


A two-class classification problem

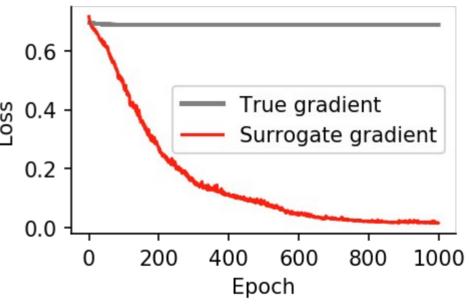


Activity snapshots (network has not learned anything)

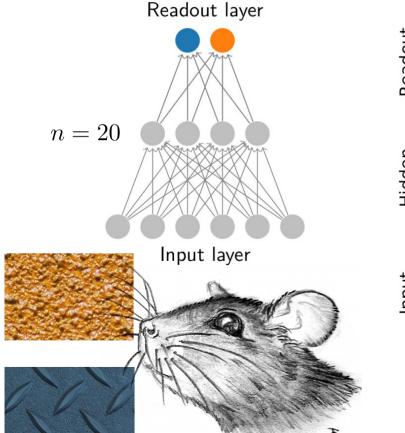
A two-class classification problem



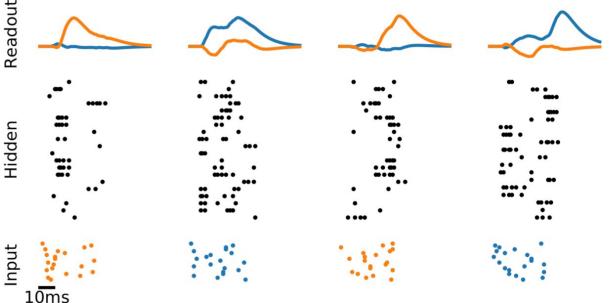
Evolution of loss during surrogate gradient descent



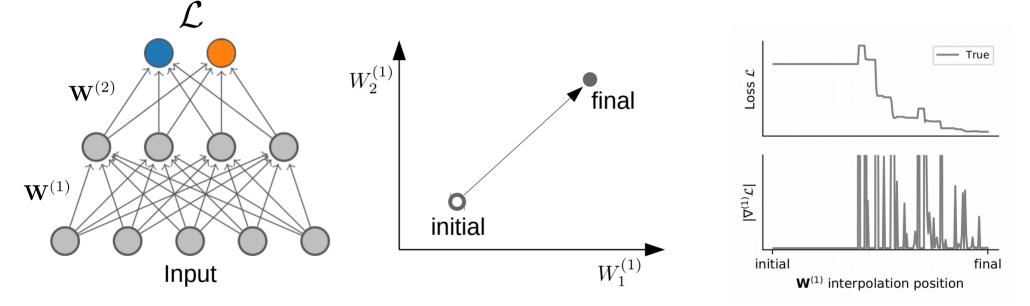
A two-class classification problem



Activity snapshots (trained network)

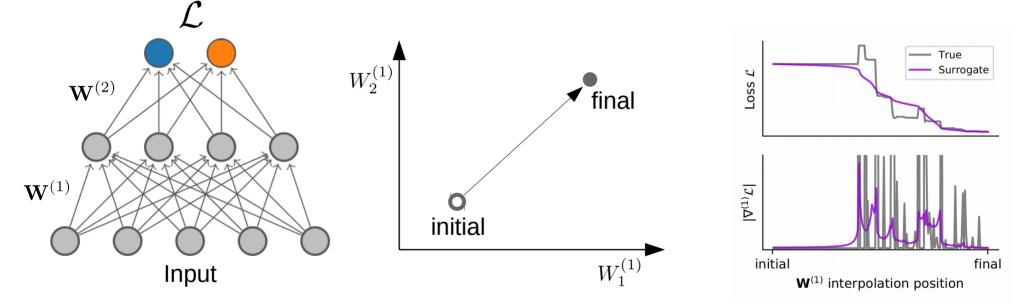


The loss landscape of a spiking neural network

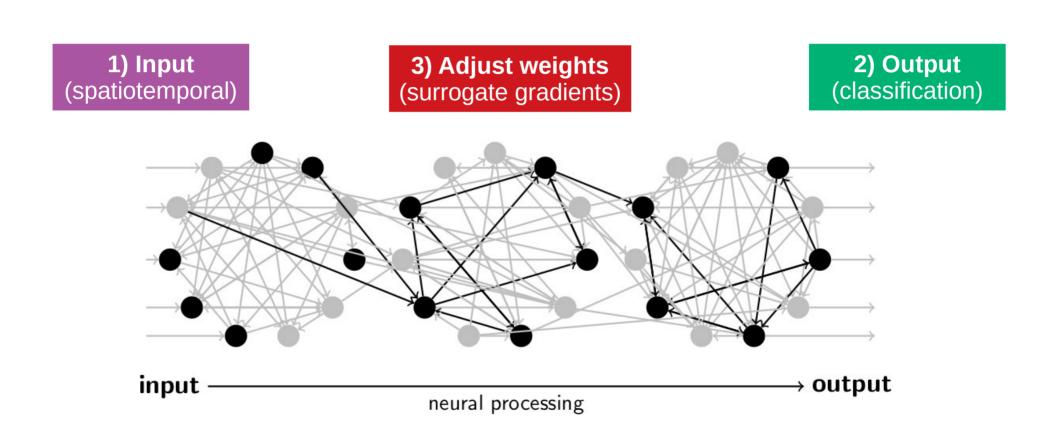


Neftci, Mostafa, & Zenke (in press)

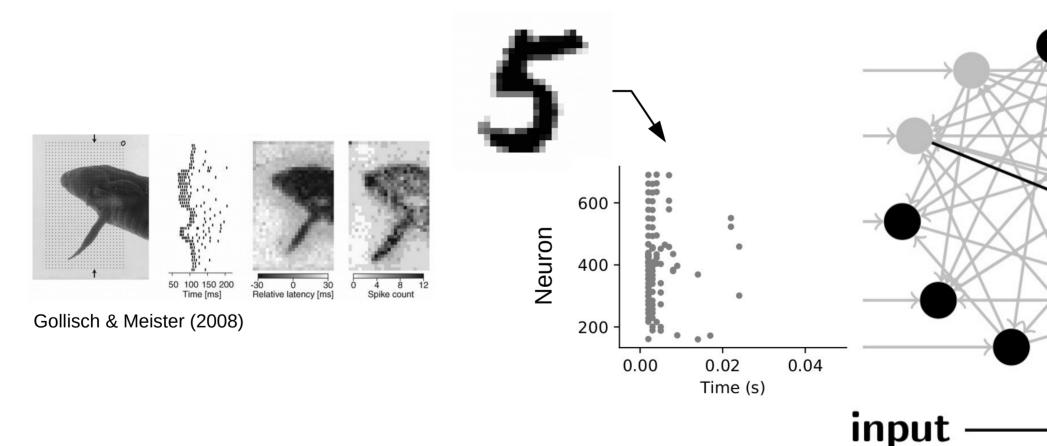
The loss landscape of a spiking neural network



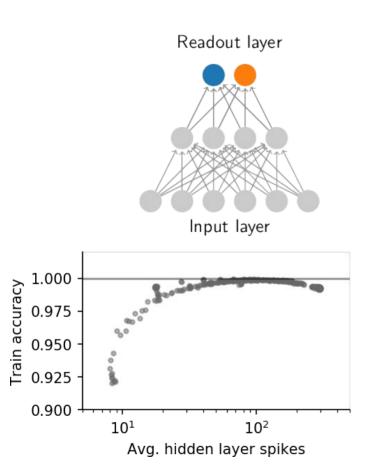
Neftci, Mostafa, & Zenke (in press)

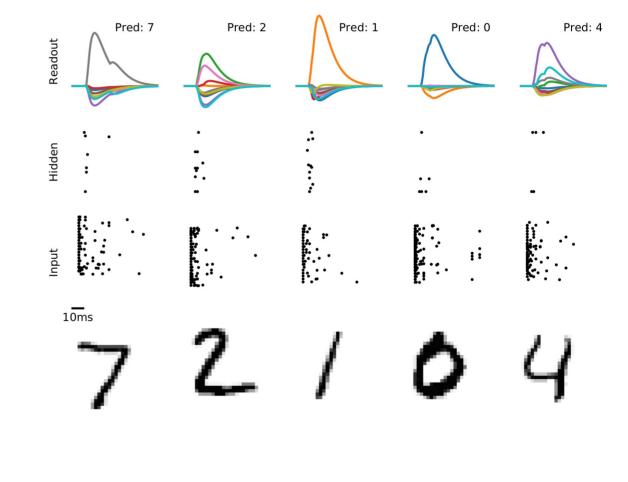


Input: Spatiotemporal spike patterns

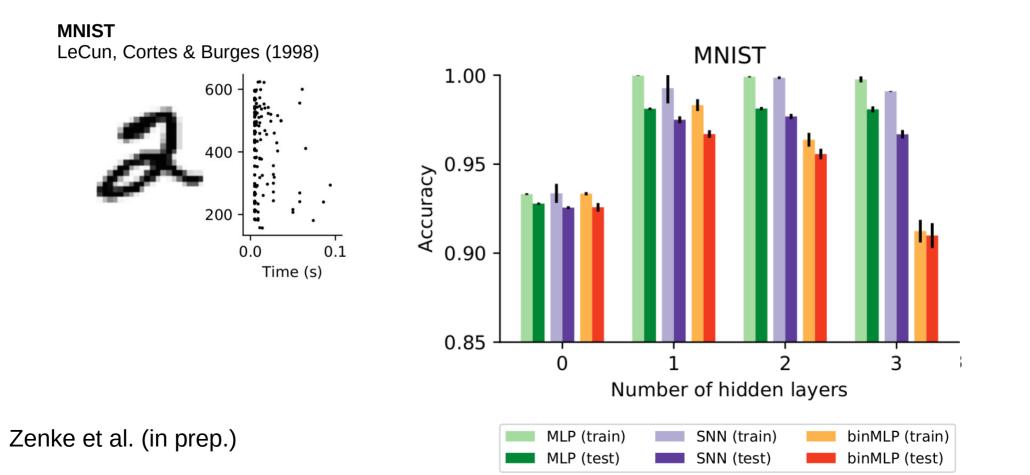


MNIST is solved with a handful of spikes

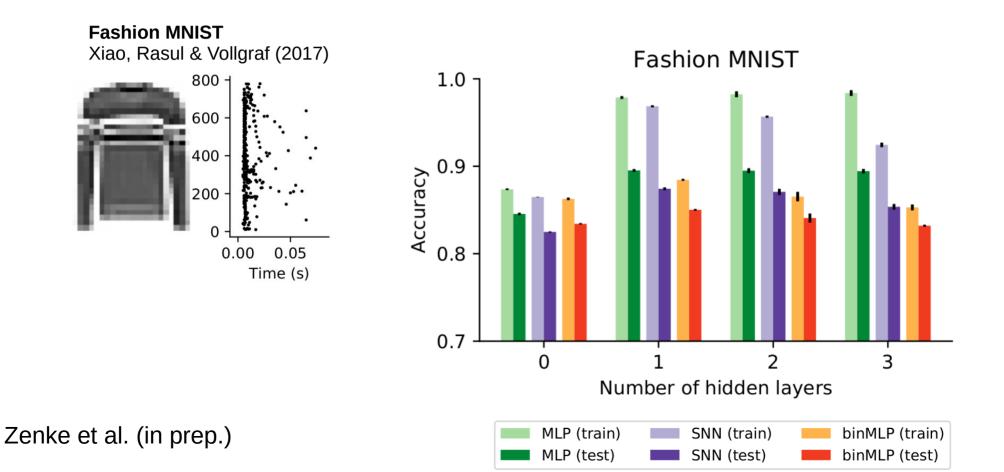




Benchmarks



Benchmarks (2)

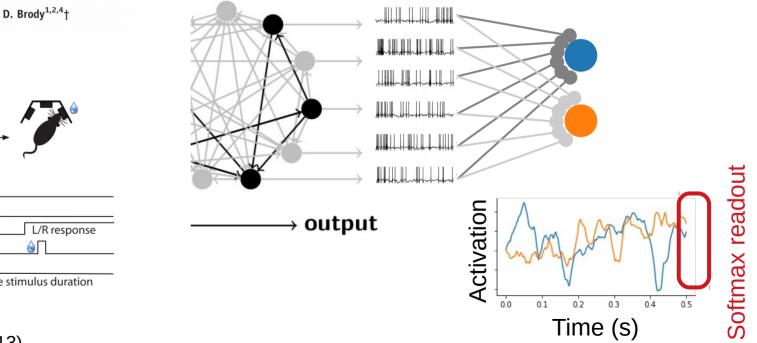


Back to bio-inspired: A DM problem

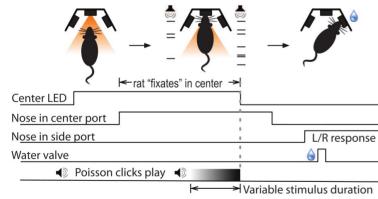
Rats and Humans Can Optimally Accumulate Evidence for Decision-Making

Bingni W. Brunton,^{1,2}* Matthew M. Botvinick,^{1,3} Carlos D. Brody^{1,2,4}†

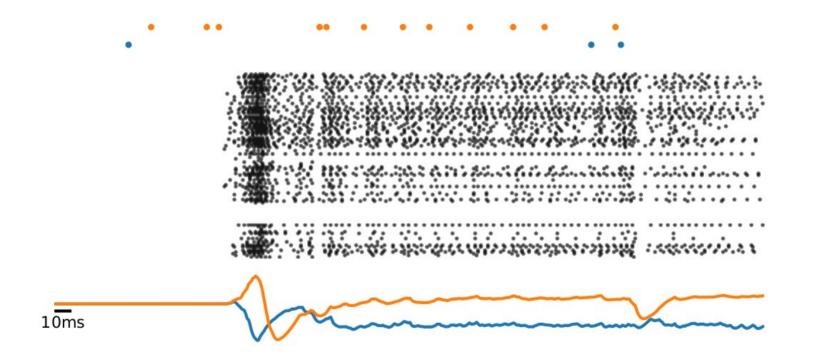
+ Short-term plasticity Tsodyks & Markram (1997)



A auditory task (rat version)



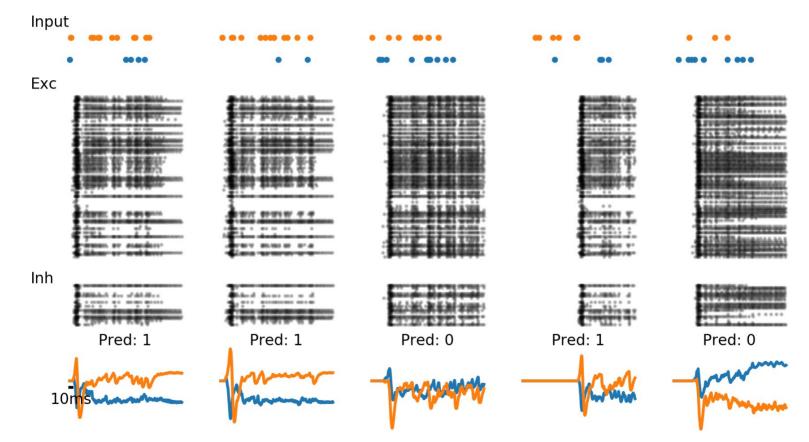
Activity snapshot for single decision making trials



Zenke et al. (in prep.)

Network learns to use delay activity

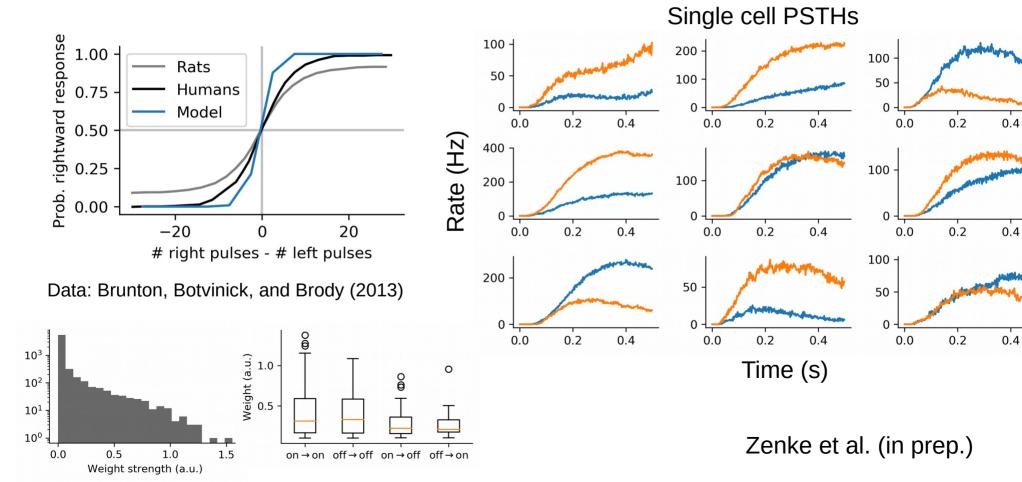
Activity snapshots for single decision making trials

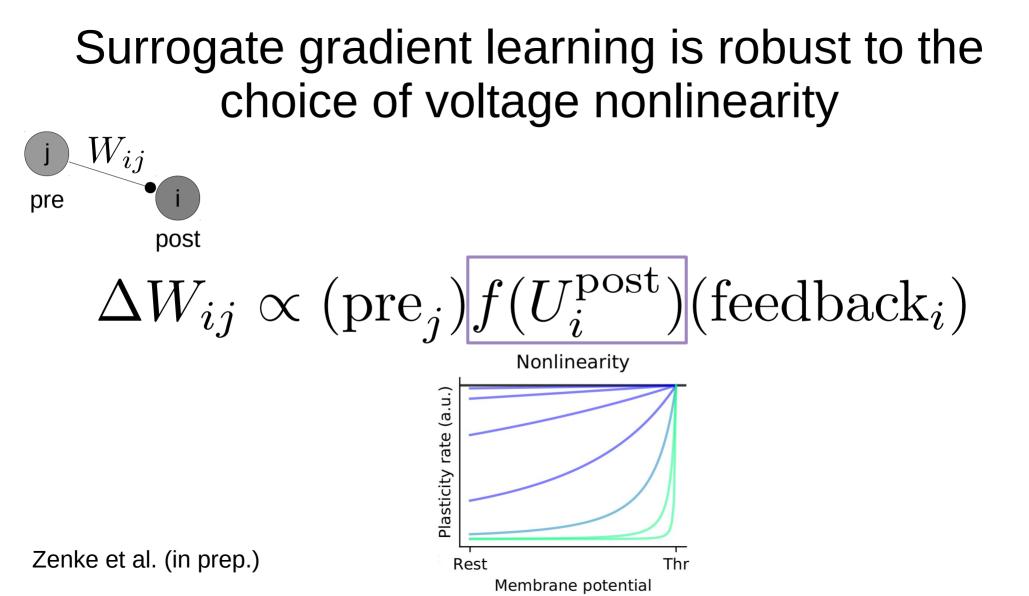


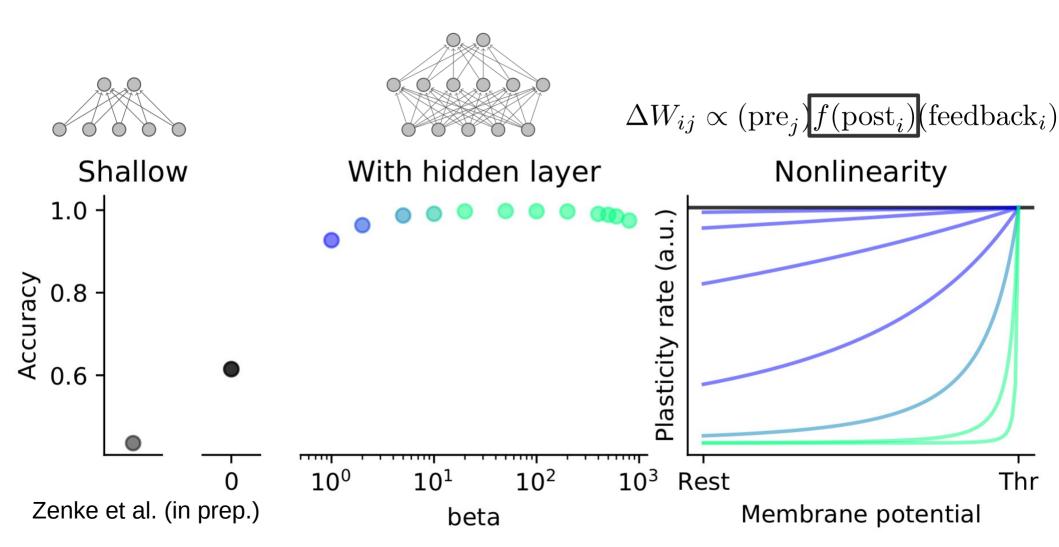
Zenke et al. (in prep.)

Network learns to use delay activity

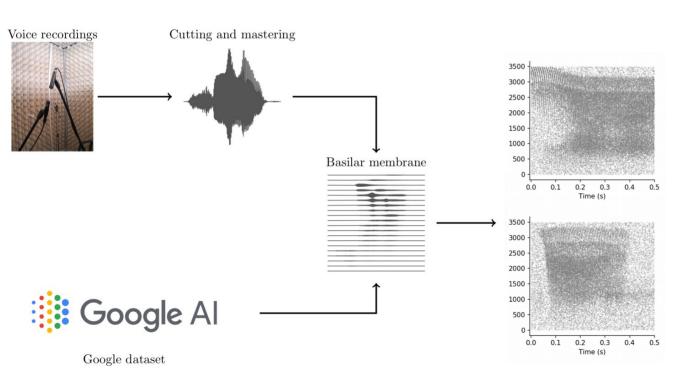
Spiking network solves the random clicks task







Benchmarks: The need for objective comparison of spiking networks



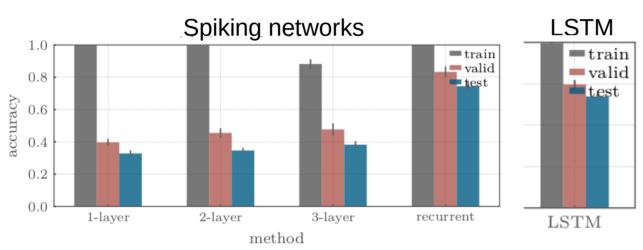
In collaboration with Benjamin Cramer Kirchhoff Institute of Physics Uni Heidelberg

Spiking benchmark data sets

- Spoken digits & commands German/English
- More than 100k examples
- Spikes from cochlea model (3.5k channels)

Cramer, Stradmann, Schemmel & Zenke (in prep.)

Benchmark results



Preliminary

In collaboration with **Benjamin Cramer Kirchhoff Institute of Physics** Uni Heidelberg

Cramer, Stradmann, Schemmel & Zenke (in prep.)

Summary & Outlook

- End-to-end training of spiking neural networks using surrogate gradients
- Learning is robust, but a nonlinear voltagedependent learning rule is required
- What next ...?
 - Study representation in functional spiking networks
 - Elucidate feedback channels
 - Study unsupervised cost functions (e.g. prediction)

Thanks

Post-doc advisors

Surya Ganguli and the Gang

Review/Tutorial: Neftci, Mostafa, & Zenke (2019). ArXiv

Emre Neftci, UC Irvine

Tim Vogels and Group

Funding:

Code & **Tutorials:** fzenke.net

Artwork: K. Yadava (kyadava.net)