
Fluctuation-driven initialization for spiking
neural network training

Julian Rossbroich1,2,Y, Julia Gygax1,2,Y, and Friedemann Zenke1,2,*

1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
2Faculty of Science, University of Basel, Switzerland

YThese authors contributed equally to this work.
*Corresponding author: friedemann.zenke@fmi.ch

Abstract

Spiking neural networks (SNNs) underlie low-power, fault-tolerant information process-
ing in the brain and could constitute a power-efficient alternative to conventional deep neu-
ral networks when implemented on suitable neuromorphic hardware accelerators. However,
instantiating SNNs that solve complex computational tasks in-silico remains a significant
challenge. Surrogate gradient (SG) techniques have emerged as a standard solution for
training SNNs end-to-end. Still, their success depends on synaptic weight initialization,
similar to conventional artificial neural networks (ANNs). Yet, unlike in the case of ANNs,
it remains elusive what constitutes a good initial state for an SNN. Here, we develop a
general initialization strategy for SNNs inspired by the fluctuation-driven regime commonly
observed in the brain. Specifically, we derive practical solutions for data-dependent weight
initialization that ensure fluctuation-driven firing in the widely used leaky integrate-and-
fire (LIF) neurons. We empirically show that SNNs initialized following our strategy exhibit
superior learning performance when trained with SGs. These findings generalize across
several datasets and SNN architectures, including fully connected, deep convolutional, re-
current, and more biologically plausible SNNs obeying Dale’s law. Thus fluctuation-driven
initialization provides a practical, versatile, and easy-to-implement strategy for improving
SNN training performance on diverse tasks in neuromorphic engineering and computational
neuroscience.

Introduction

Spiking neurons communicate through discrete action potentials, or spikes, thereby enabling
energy efficient and reliable information processing in neurobiological and neuromorphic systems
[1, 2]. Before using an SNN for any application, their connections need to be task-optimized.
In conventional ANNs this step is accomplished through direct end-to-end optimization using
back-propagation in combination with suitable parameter initialization [3]. However, the lack
of smooth derivatives of neuronal spiking dynamics precludes using gradient-based optimization
in SNNs. One increasingly common approach to overcome this issue is SG learning [4–6] which
relies on continuous relaxations of the actual gradients for parameter updates. While SGs are a
powerful tool for building functional SNN models, they can be adversely affected by poor initial
parameter choices. In deep ANNs, suboptimal weight initialization can lead to vanishing or
exploding gradients [7–9], thereby creating a major impediment to their use. Optimal weight
initialization [10–12] combined with suitable architectural choices such as skip connections [11,
13] largely avoid this issue in ANNs. Similarly, the problem of vanishing gradients has been
suggested to affect deep SNNs [14, 15]. However, we still lack a principled strategy for SNN
initialization.

1

mailto:friedemann.zenke@fmi.ch

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Here, we close this gap by introducing a practical weight initialization strategy for SNNs.
Specifically, we draw inspiration from neurobiology, where neuronal dynamics commonly exhibit
fluctuation-driven firing [16, 17]. Since neurons in the fluctuation-driven regime are more sen-
sitive to small changes in the input [18] and thus also to changes in their synaptic weights, we
hypothesized that this regime could be advantageous for subsequent SG learning. In the follow-
ing, we develop a general, yet simple initialization theory for SNNs consisting of LIF neurons,
and empirically demonstrate its effectiveness for task-optimizing SNNs using SG techniques.

Results

Neurons in biological SNNs commonly exhibit irregular and asynchronous firing dynamics [16,
17, 19]. Such dynamics can often be attributed to large sub-threshold fluctuations that can
naturally arise through excitatory-inhibitory balance commonly observed in neurobiology [19,
20]. To test whether this fluctuation-driven regime could constitute a suitable initial state for
subsequent learning, we proceeded in two steps. First, we derived a set of compact analytical
expressions that link the initial synaptic weight distribution with the magnitude of sub-threshold
fluctuations. Second, we numerically tested whether initializing SNNs in the fluctuation-driven
regime would allow us to rapidly train these networks to high accuracy using SGs.

To arrive at analytical expressions, we note that there are primarily three factors that
contribute to the membrane potential fluctuations (Fig. 1a). These are, first, the number and
firing statistics of the input neurons, second, the synaptic weight distribution, and third, the
postsynaptic and neuronal parameters that govern temporal integration of the inputs. For
simplicity, we assume that the presynaptic input arrives from a homogeneous population of
independent Poisson neurons and that the initial weight distribution is given by a Gaussian.
Further, we limited our derivation to current-based LIF neurons, which are commonly used in
SNN models.

To derive an expression that links the synaptic weight distribution to the fluctuation magni-
tude, we consider a current-based LIF neuron with membrane potential U , whose sub-threshold
dynamics are given as the sum of weighted filtered presynaptic spike trains Sj :

U(t) =
∑
j

wjε ∗ Sj(t) , (1)

where Sj =
∑

k δ(t− tkj) denotes the output spike train of the presynaptic neuron j with firing

times tkj and ∗ is a temporal convolution of the spike train Sj(t) with ε, a linear filter kernel
with the shape of an evoked postsynaptic potential (PSP). Specifically, we assume a synaptic
model with exponentially decaying currents and, therefore, the shape of ε is fully characterized
by the synaptic and membrane time constants τsyn and τmem (see Methods and Supplementary
Material S1). Since we have many statistically independent inputs, the Central Limit Theorem
guarantees that U approaches a normal distribution which is fully specified by its mean µU and
variance σ2

U . Further assuming that presynaptic spikes are generated by homogeneous Poisson
processes with associated firing rates νj = 〈Sj〉, yields the following expressions for the mean
and the variance

µU ≡ 〈U〉 =
∑
j

wjνj

∫ ∞
−∞

ε(s)ds =
∑
j

wjνj ε̄ (2)

σ2
U ≡

〈
U2
〉
− µ2

U =
∑
j

w2
jνj

∫ ∞
−∞

ε(s)2ds =
∑
j

w2
jνj ε̂ , (3)

in which ε̄ and ε̂ correspond to definite integrals of the filter kernel and squared filter kernel re-
spectively which can be obtained analytically for many common neuron models (Supplementary

2

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

���������������� ���������� �����
�	�

a (i)

b c

(ii) (iii)

Without spike reset With spike reset

Figure 1. Parameterization of fluctuation-driven spiking serves as an initialization
strategy for SNNs. (a) Incoming presynaptic Poisson spike trains (i) are weighted by synaptic
strengths wj and filtered through a PSP kernel ε(t) (ii) to yield membrane fluctuations u(t) in
a postsynaptic neuron (iii). In the fluctuation-driven regime, the membrane potential crosses
the firing threshold θ stochastically, resulting in irregular output spike trains. Because the
magnitude of membrane potential fluctuations, σU , is determined by the parameters of the
presynaptic weight distribution, µW and σW , synaptic weights can be initialized from a target
value for the fluctuation magnitude. (b) Expected and observed distributions of the membrane
potential without considering spike-reset dynamics for different target fluctuation strengths
expressed in terms of σU and ξ. (c) As panel (b), but considering the spike reset dynamics in
the numerical simulations.

Material S1). For n inputs with equal firing rates νj = ν and independently drawn normally
distributed weights W ∼ N

(
µW , σ

2
W

)
, the above expressions further simplify to

µU = nµW νε̄ (4)

σ2
U = n(σ2

W + µ2
W)νε̂ . (5)

Finally, rewriting Equations (4) and (5) yields the desired expressions linking the synaptic
weight distribution with the magnitude of the membrane potential fluctuations:

µW =
µU
nνε̄

(6)

σ2
W =

σ2
U

nνε̂
− µ2

W

=
1

nνε̂

(
θ − µU
ξ

)2

− µ2
W . (7)

For a neuron to be in the fluctuation-driven regime requires the bulk of the Gaussian distribu-
tion has to lie below the firing threshold (Fig. 1b). At the same time, we require a non-vanishing
probability to cross the threshold to ensure some baseline levels of spiking activity. To formalize
these requirements, we introduced the target parameter ξ as

ξ ≡ θ − µU
σU

, (8)

which describes the distance between the mean membrane potential µU and the spike threshold
θ in units of the standard deviation σU (Fig. 1a and Supplementary Fig. S1). To satisfy the

3

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

above requirements, ξ should be on the order of one. Concretely, we consider the range 1 ≤ ξ ≤ 3
(Fig. 1b). For zero-mean weight distributions, this directly translates into a desired fluctuation
amplitude range 1

3 ≤ σU ≤ 1, which, given the above assumptions, is achieved by

σ2
W =

σ2
U

nνε̂
(9)

at initialization.
The expressions are based on a no-spiking assumption. Hence, we expect systematic devi-

ations from the derived membrane potential distribution in the presence of spiking. However,
for small sub-threshold fluctuations (σU � 1), the systematic contribution of the spike reset
becomes negligible (Fig. 1c). Exact membrane potential distributions that take into considera-
tion spike reset dynamics could be obtained using the Fokker-Planck equation [21, 22], however,
such an approach does not yield compact analytic expressions and is, thus, less practical for our
purposes.

Because Eqs. (4) and (5) are based on an independence assumption that is violated by real-
world data, we expected further deviations in numerical simulations with real-world data. To
quantify the magnitude of these deviations, we compared the predictions of Eqs. (4) and (5)
with observed membrane potential fluctuations in a single LIF neuron exposed to inputs from
two realistic datasets. For simplicity, we assumed a zero-mean weight distribution and used
Eq. (9) to obtain its standard deviation for different target fluctuation magnitudes σU .

First, we considered a synthetic classification dataset based on random manifolds that can
flexibly generate SNN benchmarks of arbitrary complexity [5] (Randman; see Methods). We
generated a dataset with nRandman = 20 input neurons and 10 classes in which spike times
belonging to the same class are drawn from a smooth random manifold (Fig. 2a) all the while
different classes correspond to different manifolds. For each input pattern, each neuron fires
precisely one spike during a 100 ms interval. Each 100 ms input interval was followed by 100 ms
of inactivity in the input layer to allow for a propagation delay in the hidden layer (Fig. 2a). We
then recorded the membrane potential distribution and found, as expected, that it deviated from
a Gaussian (Fig. 2b), due to the temporal non-stationarity and structure. Next, we measured
the observed membrane potential fluctuations σ̂U for varying target values of σU (Fig. 2c).
We found that σ̂U was systematically smaller than σU . However, the magnitude of bias was
comparable to the expected variability in the case of Poisson inputs (see Supplementary Material
S2).

Next, we considered the Spiking Heidelberg Digits (SHD) speech dataset (Fig. 2d), an SNN
benchmark based on real-world auditory data, which consists of approximately 10,000 spoken
digits in German and English that have been converted into spikes using a biologically plausible
cochlear model [23]. Importantly, SHD has a larger number of input neurons (nSHD = 700) which
typically fire more than one spike with an average input firing rate of νSHD = 15.8 Hz. Again,
we measured the membrane potential distribution and observed deviations from a Gaussian
(Fig. 2e). In contrast to the Randman data, the observed fluctuations σ̂U were systematically
larger than their target σU due to heavy tails in the distribution (Fig. 2f). Not surprisingly,
real-world data causes systematic deviations from Eqs. (4) and (5), but these differences were on
the same order as expected fluctuations due to the finite sample size of the weight and Poisson
variability. Hence, we reasoned that our simple theory provides a reasonable approximation for
initializing SNNs in the fluctuation-driven regime even when using real-world data.

Initialization of shallow SNNs

We sought to evaluate whether the fluctuation-driven regime constitutes a good initialization
strategy for SNN training. To this end, we trained a fully connected SNN with one hidden
layer with 128 units on the Randman dataset (see Tab. 4; Methods). We initialized the weights
using the parameters µW = 0 and σW given by our theory (Eq. (9) with target σU = 1). This

4

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

d e f

a b c

“five”

“zero”

Class 1 Class 2

Figure 2. Real-world datasets induce small systematic biases in fluctuation strength
at initialization. (a) Two one-dimensional example manifolds from the Randman dataset,
embedded into a three-dimensional space (left) and example spike raster plots corresponding
to a sample from each class (right). (b) Theoretically expected distribution and numerically
obtained density histogram of the membrane potential of a single neuron without spike reset
in response to the Randman dataset. Because of large peaks at u(t) = 0, the x-axes in the
first and middle panels have been truncated to 45% and 80% of their maximum, respectively.
(c) Numerically observed σ̂U as a function of the target σU for the Randman dataset. The
expected relationship corresponds to homogeneous and independent Poisson neurons. Shaded
regions indicate standard deviation across neurons. (d) Two spike rasters that correspond to
two example inputs from the SHD dataset. Input spikes are obtained by filtering recordings of
spoken digits with a biologically inspired cochlear model [23]. (e) As panel (b), for the SHD
dataset. X-axes in the first and middle panels have been truncated to 58% and 90% of their
maximum, respectively. (f) As panel (c), for the SHD dataset.

choice resulted in asynchronous irregular firing activity consistent with the fluctuation-driven
regime (Supplementary Fig. S2a-d). Subsequently, we trained the network in a supervised
fashion using SGs with previously established parameters [5], back-propagation through time
(BPTT), a maximum-over-time loss defined on ten readout units, and weak spiking activity
regularization in the form of a soft upper bound on the population firing rate at the hidden
layer (Fig. 3a; Methods). Training resulted in an SNN that accurately solved the task (test
accuracy: 97.3%± 0.2; train accuracy: 99.6%± 0.0; Fig. 3b).

To test whether our weight initialization strategy confers an advantage over other choices
of µW and σW , we performed an extensive parameter search and measured validation accuracy
after 200 training epochs. The network achieved the best validation accuracy when µW was zero
or negative and σW was close to one (Fig. 3c), well within our suggested regime of 1 ≤ ξ ≤ 3.
Further, we found a large parameter regime that supported learning at close-to-optimal accuracy
for −2 ≤ µW ≤ 0 and σW < 10 which extends beyond the parameter regime suggested by our
theory.

To test whether these results would change on a more complex task, we trained a similar SNN

on the SHD dataset [23] with weight parameters µW = 0 and σ
(SHD)
W = 0.23 as suggested by our

theory (Eq. (9) with target σU = 1). Due to differences of the number of input neurons and firing

rates between the two datasets our theory predicts σ
(SHD)
W ≈ 10−1σ

(Randman)
W . After training,

the network accurately classified spoken digits (test accuracy: 65.5% ± 0.7; train accuracy:
100.0% ± 0.0; Fig. 3d). As before, we performed an extensive parameter search over different

5

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Randman SHDa

f ihg

c

b

e

d
Re

ad
ou

t u
ni

ts

Class 1 Class 2 Class 3

Hidden
layer

Readout
layer

Input
layer

Surrogate
Gradient

Backpropagation
through time

. . .

Hidden layer Hidden layer

Readout Readout

Figure 3. Initialization in the fluctuation-driven regime results in optimal learning
performance. (a) Top: Schematic of the SNN used for training. Bottom: Illustration of
the learning dynamics. The supervised loss function Lsup relies on the maximum membrane

potential over time of readout units U
(out)
i [t], to which a Softmax and cross-entropy loss LCE is

applied. All networks were trained by minimizing Lsup in the direction of negative SGs, com-
puted with BPTT. (b) Snapshot of network activity over time after training on the Randman
dataset. Bottom: Spike raster of input layer activity from two different samples corresponding
to two different classes is shown. Middle: Spike raster of hidden layer activity. Top: Mem-
brane potential of readout units. The readout units corresponding to the two input classes are
highlighted in different shades. (c) Heatmap showing validation accuracy after training on the
Randman dataset as a function of the parameters of the synaptic weight distribution at initial-
ization. (d) Same as in panel (b), but for a network trained on the SHD dataset. (e) Same as
panel (c), but for the SHD dataset. (f) Validation accuracy as a function of target fluctuation
magnitude σU for initializations in the balanced state with µU = µW = 0. The shaded region
around the lines indicates the range of values across five random seeds. The sand-colored shaded
region corresponds to our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1. (g) Average
hidden layer firing rate as a function of σU . (h) Average magnitude of SGs with respect to the
output in the readout layer (top) and hidden layer (bottom) as a function of σU . (i) Same as
panel (h), but for the average magnitude of SGs with respect to the synaptic weights.

6

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

initializations and found that networks initialized in the fluctuation-driven regime (1 ≤ ξ ≤ 3)
showed close-to-optimal performance (Fig. 3e, f). Unlike in the Randman case, the parameter
regime with good performance was much smaller and tightly constrained around µW ≈ 0.
Finally, even though our initialization strategy posits that neurons be in the fluctuation-driven
regime, we observed a sizeable fraction of hidden layer neurons with regular firing activity
both before (Supplementary Fig. S2e) and after learning (Fig. 3d). We found that our theory
predicts these cases (Supplementary Fig. S2d, h) due to the inherent variability in the sampling
of synaptic weights (Supplementary Material S2 and Supplementary Fig. S3).

For both datasets, we found that initialization with σW � 1 and µW ≈ 0 supported close-
to-optimal learning. This result surprised us because the ensuing vanishing membrane potential
fluctuations should lead to quiescent hidden layer activity. To check whether this is indeed the
case, we initialized networks with different target values for σU and recorded their hidden layer
activity. As expected, we found that fluctuation magnitudes σU � 1 still supported close-to-
optimal learning performance (Fig. 3f), despite an absence of spikes in the hidden layer at the
time of initialization (Fig. 3g).

Because vanishing spiking activity should influence gradient magnitudes during backprop-
agation, we recorded the magnitude of the SG with respect to the output at the readout and
hidden layers at the time of the first training epoch. Due to the nature of the loss function,
initialization does not affect the magnitude of the gradient in the readout layer but can change
the magnitude of the gradient by two orders of magnitude in the hidden layer (Fig. 3h). Con-
sequently, the absolute magnitude of weight changes is also amplified in the hidden layer when
fluctuations are large (Fig. 3i). Since the synaptic weight update depends on presynaptic ac-
tivity, initializations resulting in quiescent hidden layers (Fig. 3g) lead to an absence of weight
updates in the readout layer (Fig. 3i). However, as long as SGs do not vanish in the first layer,
the network can recover spike propagation and therefore gradient flow during training. That
the network is able to learn without problems in this regime may seem surprising at first and
is indeed a peculiarity of SGs.

In addition to classification accuracy, the sparsity of neuronal activity is a key SNN perfor-
mance indicator. To limit firing rates in the hidden layers to a sensible regime, we optimized
all networks with activity regularization. Specifically, we added a soft upper bound on the
population firing rate (see Methods). This regularization punishes population firing rates in
the hidden layers exceeding 10 Hz. To investigate the effect of weight initialization on spar-
sity, we systematically recorded population firing rates of the above network trained with or
without activity regularization. As expected, activity regularization resulted in average popu-
lation firing rates of < 10 Hz following training, independent of the target σU at initialization.
In contrast, networks trained without activity regularization exhibited population firing rates
exceeding 60 Hz in the hidden layer and only weak dependence on the target σU at initializa-
tion (Supplementary Fig. S4a, b). Next, we wanted to ensure that activity regularization does
not result in a substantial loss in classification accuracy. To that end, we compared the accu-
racy of networks trained with and without activity regularization for the given threshold and
strength parameters. We found that regularized networks performed only slightly worse than
their unregularized counterparts albeit with vastly reduced average firing rates (Supplementary
Fig. S4c). Based on these findings, we used activity regularization on the population firing rates
in all subsequent experiments.

Thus far, we studied strictly feed-forward SNNs without recurrent hidden layer connections.
Recurrent SNNs typically perform better than feed-forward networks on tasks requiring memory
such as SHD [5]. To that end, we extended our initialization strategy to networks with recurrent
connections (see Methods) and applied it to recurrent SNNs with one hidden layer. As in the case
of feed-forward networks, we found recurrent SNNs trained well with sufficiently small target
fluctuations σU (Supplementary Fig. S5a, b). In summary, shallow SNNs are surprisingly robust
to initialization when the absolute magnitude of the weights is small. In practice, initialization

7

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

with µU = 0 and a target fluctuation magnitude σU ≤ 1 can be used to achieve close-to-optimal
learning performance.

Initialization of deep SNNs

We hypothesized that deep SNNs are more sensitive to initialization, as is the case with deep
ANNs [11]. To test this hypothesis, we first extended our initialization strategy to deep and
recurrent convolutional spiking neural network (CSNN) architectures (see Methods). We then
initialized several CSNN architectures with different numbers of recurrently connected hidden
layers according to Eqs. (37-39) with target µU = 0 and different targets σU . Subsequently, we
trained the resulting networks and measured validation accuracy on held-out data. As expected,
sensitivity to the fluctuation magnitude at initialization increased with network depth (Fig. 4a).
As in shallow fully connected networks, CSNNs with a single hidden layer were remarkably
robust to initialization and close-to-optimal training performance was achieved for σU ≤ 1. In
contrast, deep networks with three hidden layers performed well when the fluctuation magnitude
fell into the regime 0.05 ≤ σU ≤ 3. This regime was narrowed further in deeper networks with
seven hidden layers, which only achieved high validation accuracy for initializations in the range
0.5 ≤ σU ≤ 2. Like in the shallow case, activity regularization ensured sparse activity with a
negligible effect on classification accuracy (Supplementary Fig. S4d, e). Finally, although a
seven-layer CSNN did not improve classification performance on this task over the three-layer
network, we wanted to know whether initialization with σU = 1 would be conducive for training
even deeper networks. To get at this question, we extended our network to ten hidden layers,
the deepest possible architecture afforded by our GPU memory while keeping all other training
parameters equal to networks with seven layers, and found that initialization with σU = 1
resulted in reliable training (test accuracy: 81.1% ± 1.6; validation accuracy: 93.6% ± 2.9).
Crucially, when we instead trained with Kaiming initialization [11], the standard initialization
for non-spiking rectified linear unit (ReLU) networks, learning failed in CSNNs with seven or
more hidden layers. In summary, we observed that fluctuation-driven initialization with σU = 1
supports learning in deep CSNNs.

To check whether depth increases the generalization performance of trained networks, we
compared the test error of successfully trained CSNNs with one, three, seven, and ten hidden
layers. We found that deeper networks did not show better generalization performance than
one-layer networks (Fig. 4b). These findings suggest that the addition of multiple hidden layers
does not provide an advantage in recurrently connected CSNNs on the SHD dataset. Since
recurrently connected networks can be considered as deep in time, we were wondering whether
strictly feed-forward SNNs would benefit from increasing depth. To that end, we repeated
training of deep CSNNs with corresponding layer sizes but without recurrent hidden layer
connections on the SHD dataset (see Methods). Indeed, we found that deep feed-forward SNNs
performed better than shallow feed-forward SNNs (Fig. 4b and Supplementary Fig. S6).

In addition to the classification accuracy, weight initialization affects training speed. To
check whether fluctuation-driven initialization is conducive to fast training, we measured the
number of required epochs to reach 90% accuracy on the training dataset in CSNNs with one
and three hidden layers. We found that networks initialized in the fluctuation-driven regime
(σU = 1) trained fastest (Fig. 4c and Supplementary Fig. S7). On average, CSNNs with one
hidden layer initialized with target σU = 1 reached 90% training accuracy after 19.2 epochs, and
CSNNs with three hidden layers required 16.8 epochs to reach 90% training accuracy. Thus,
fluctuation-driven initialization is conducive to fast training.

Vanishing SGs impair learning in deep SNNs. In deep ANNs initialization is closely
related to the problem of vanishing or exploding gradients [7–9]. We wondered whether this
mechanism, i.e., vanishing or exploding SGs, prevented training in deep SNNs when σU falls
outside the optimal regime. To test this idea, we initialized seven-layer CSNNs with different

8

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

a b

c d e f

*

Figure 4. Deep CSNNs are sensitive to initialization due to vanishing SGs. (a)
Validation accuracy as a function of target fluctuation strength σU for recurrent CSNNs of
increasing depth. All networks were trained on the SHD dataset. The triangular markers in the
right plot correspond to the values of σU plotted in panels (d)-(f). The shaded region around
the lines indicates the range of values across five random seeds. The sand-colored shaded region
corresponds to our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1. The dashed line
corresponds to Kaiming initialization. (b) Test error of the five best-performing models in
terms of validation accuracy, for different numbers of hidden layers and for networks with and
without recurrent connections in the hidden layers. ∗No initialization parameter sweeps were
performed for networks with ten hidden layers. Instead, the data depict results obtained from
five networks initialized with target σU = 1. (c) Training speed of CSNNs, as illustrated by the
number of required epochs to reach 90% training accuracy on the SHD dataset. (d) Population
firing rate at initialization (before training) as a function of hidden layers in a CSNN with seven
hidden layers, for different values of σU . (e) As panel (d), but displaying the magnitude of
SGs. (f) As panel (d), but displaying the magnitude of the synaptic weight update. When
membrane potential fluctuations are so small that neurons in the previous layer do not spike,
the weight update equals zero.

targets σU and recorded the neuronal activity in hidden layers. Like in shallow SNNs (Fig. 3g),
initializations with small σU led to quiescent hidden layers in deep CSNNs, which impaired
the activity propagation to deeper layers (Fig. 4d). Specifically, in networks initialized with
σU = 0.5, only the first four hidden layers exhibited spiking activity. This effect was amplified
in networks initialized with σU = 0.2, in which all but the first hidden layer were quiescent.
In contrast, networks initialized with σU = 2 exhibited a strong increase in firing rates in
deeper layers, and initializations with σU = 20 caused firing rates to saturate in all layers of the
network. Only initializations with σU = 1 led to stable activity propagation with a firing rate
of ≈ 10 Hz throughout the network.

We next investigated how impaired activity propagation influenced SG magnitudes. To that
end, we recorded SG magnitudes at each hidden layer during training. In networks initialized
with σU = 0.5 and σU = 0.2, in which spiking activity vanished in deep layers, each quiescent
layer decreased SGs by approximately two orders of magnitude (Fig. 4e). As a result, the
magnitude of weight updates in early layers decreased by several orders of magnitude consistent
with the numerical value of the surrogate derivative for neurons at rest (0.023 for β = 20; see
Methods). Moreover, weight updates vanished in deeper layers, caused by the lack of presynaptic

9

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

activity (Fig. 4f). In contrast, initializations with σU ≥ 1 led to relatively stable SG and weight
update magnitudes across all layers (Fig. 4e, f). Notably, gradients were consistently one to
two orders of magnitude smaller in networks initialized with σU = 20 compared to networks
initialized with σU = 1 or σU = 2 (Fig. 4e, f).

In summary, the sensitivity to initialization in deep SNNs is caused by impaired activity
propagation to deeper layers and associated vanishing SGs. Empirically we found that only
initializations with σU ≈ 1 supported both propagation of sparse population activity and stable
magnitudes of back-propagating SGs in deep networks.

Since the surrogate derivative used to compute SGs is to some extent freely tunable [5], one
might argue that re-scaling it could provide a potential solution to vanishing SGs by ensuring
stable gradient magnitudes during back-propagation (see Methods). We tested this approach
and found that a re-scaled SG can only prevent vanishing gradients in the absence of spiking
at the cost of exploding gradients when the network does exhibit spiking which emerges over
training (Supplementary Fig. S8a-c). In strictly feed-forward networks, we found that the
gradients were less prone to exploding, hence re-scaling the SG could potentially alleviate the
problem of vanishing gradients (Supplementary Fig. S8d-f) and therefore increase robustness
to initialization. However, with increasing depth, exploding gradients would likely prevent
successful training even in deep feed-forward SNNs.

Seeing that training of deep SNNs was sensitive to the magnitude of SGs [24], we speculated
that the robustness to weight initialization we observed in three-layer CSNNs could be attributed
to the use of our optimizer with a per-parameter learning rate during training (see Methods).
To test this idea, we trained three-layer CSNNs initialized with different σU either with a smart
optimizer [25, 26] or with stochastic gradient descent (SGD) without an optimizer. We found
that networks trained with SGD were indeed more sensitive to the fluctuation magnitude at
initialization (Supplementary Fig. S9). This effect was especially prominent in recurrent CSNNs.

Homeostatic plasticity increases robustness to initialization in deep SNNs. Because
quiescent hidden layers are closely linked to vanishing SGs and thus to preventing training in
deep SNNs, a homeostatically maintained firing rate, as observed in biological neural networks
[27–29], could rescue activity propagation and therefore enable training. To test this hypothesis,
we implemented homeostatic plasticity as an additional regularization term in the loss function
that sets a lower bound on the firing rate of each individual neuron [23], which penalizes qui-
escent neurons (Fig. 5a; see Methods). We trained three-layer recurrent CSNNs on the SHD
dataset, either with or without the additional homeostatic plasticity term. Indeed, homeostatic
plasticity rescued training performance for networks initialized with σU � 1 (Fig. 5b).

Next, we investigated whether homeostatic plasticity was necessary throughout the whole
training period, or whether rescuing activity propagation before supervised training would be
sufficient to enable learning. To this end, we developed a form of dynamic initialization for
SNNs involving a homeostatic priming period before training. During the initial priming pe-
riod, initialized networks were optimized solely on the homeostatic objective to nudge the spiking
activity into a regime conducive to learning. After priming, we removed the homeostatic objec-
tive and started the supervised training period as usual. Like ongoing homeostatic plasticity,
the homeostatic priming period was capable of rescuing learning for initializations with σU � 1
(Fig. 5c). However, in rare cases, the network did not train after successful priming and the
restored spiking activity vanished during training on the supervised loss function.

We wondered whether homeostatic plasticity affected the network’s generalization perfor-
mance and thus compared the test error of networks trained with the proposed homeostatic
mechanisms. Neither ongoing homeostatic plasticity nor homeostatic priming had a system-
atic effect on the test error (Fig. 5d). Therefore, we concluded that both biologically inspired
homeostatic plasticity and homeostatic priming are effective strategies to increase the robustness
towards initialization in deep SNNs without impairing their performance.

10

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

a b c d
+

-
Firing rate

Figure 5. Homeostatic plasticity increases the robustness to initialization in deep
SNNs. (a) Illustration of the homeostatic activity mechanism as a firing rate regularizer.
Homeostatic plasticity (green) prevents neurons from remaining silent by increasing the synaptic
weights when the firing rate is low. In all our simulations, a complementary upper bound activity
regularizer (grey), that acts on the population-level, prevents neurons from spiking incessantly.
(b) Validation accuracy after training a deep convolutional SNN with three hidden layers on
the SHD dataset as a function of σU . The colored line corresponds to networks trained with an
active homeostatic plasticity mechanism. The black line corresponds to the baseline without
homeostatic plasticity. The shaded region around the lines indicates the range of values across
five random seeds. (c) As panel (b), for networks that were primed for 10 epochs with a
homeostatic plasticity mechanism prior to supervised learning. During supervised learning, the
homeostatic mechanism was inactive. (d) Test error of the 5 best-performing models in terms
of validation accuracy for models trained with homeostatic plasticity, homeostatic priming, and
the baseline model.

Deep SNNs with skip connections are more robust to initialization. In deep ANNs,
skip connections are standard practice to facilitate optimization and improve training perfor-
mance [13, 30, 31]. For instance, residual networks (ResNets) [31] use residual connections, a
specific type of identity skip connections whereby the inputs are added directly to the output
of a layer or block. We argued that residual connections are ill-defined in SNNs as the spiking
non-linearity would only allow adding spikes to the input spike train. Instead, we considered
classic skip connections and asked whether they rescue spike propagation in deep CSNNs. We
tested this idea in CSNNs with three hidden layers by implementing trainable skip connections
between each hidden layer and the readout layer (Supplementary Fig. S10a; Methods). Skip
connections indeed increased robustness to initialization, with respect to both large σU > 10 and
small σU � 1 (Supplementary Fig. S10b). However, generalization performance after training
did not increase as a result of added skip connections (Supplementary Fig. S10d). Notably, for
initializations with small σU � 1, optimized networks only propagated activity through the skip
connection between the first hidden layer and the readout layer, effectively reducing the network
to a single hidden layer. As skip connections did not prevent all layers from being quiescent
in deep SNNs, we wondered whether homeostatic plasticity and skip connections complement
each other and further increase performance for initializations with σU � 1. Thus, we trained
three-layer CSNNs with skip connections and ongoing homeostatic plasticity. Networks with
combined skip connections and homeostatic plasticity also exhibited enhanced robustness to ini-
tialization but did not show a significantly better generalization performance (Supplementary
Fig. S10c, d). We concluded that skip connections are a viable approach to increase the robust-
ness towards initializations with large σU > 10 in deep CSNNs, but are not able to compensate
for vanishing gradients in deep layers when σU � 1.

Fluctuation-driven initialization performs robustly across datasets. Together, our
results suggest that traditional Kaiming initialization used for ANNs is sufficient for training
three-layer CSNNs, but breaks down when training seven-layer or deeper CSNNs on the SHD

11

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

dataset. In contrast, our proposed initialization strategy with the target fluctuation parameter
set to σU = 1 yields close-to-optimal training performance in all three-, seven-, and even ten-
layer networks. To directly compare fluctuation-driven and Kaiming initialization, we measured
generalization performance in terms of test accuracy after training. As expected, we found only
small differences in test accuracy for three-layer networks (Fig. 6a; Tab. 1).

Specifically, Kaiming initialized three-layer networks achieved an average test accuracy of
83.1%±1.2 (validation accuracy: 95.9%±1.6), while the same networks initialized with our pro-
posed strategy reached an average test accuracy of 82.7%±1.1 (validation accuracy: 94.1%±1.7).
Seven-layer networks initialized with Kaiming initialization performed close to chance level after
training (test accuracy: 4.5%± 0.0; validation accuracy: 4.7%± 0.5), while networks initialized
with σU = 1 reached 83.5%± 1.3 accuracy on the test set (Fig. 6b; Tab. 1; validation accuracy:
94.9% ± 1.0). As homeostatic plasticity was able to compensate for suboptimal initializations
by rescuing activity propagation in three-layer CSNNs, we wondered whether these results ex-
tend to seven-layer networks. To this end, we trained Kaiming-initialized seven-layer CSNNs
with ongoing homeostatic plasticity. Indeed, homeostatic plasticity rescued training, but test
accuracy after training (test accuracy: 77.0%±3.0; validation accuracy: 95.0%±1.8) was worse
compared to networks initialized with σU = 1 that were trained without homeostatic plasticity
(Fig. 6b; Tab. 1).

So far, we have limited our investigation to initialization-dependence to deep CSNNs trained
on the SHD dataset, which is relatively small and may thus be prone to overfitting. To test
whether our findings would generalize to other tasks, we trained deep feed-forward CSNNs
on two additional datasets from different input modalities. First, we considered CIFAR-10, a
dataset consisting of static images. To translate static image input into spiking, we augmented
the networks with an additional layer of simulated sensory neurons into which we injected the
individual image pixel values as currents. Both bias currents and current gain were optimized
end-to-end with all other network parameters (see Methods). We then constructed deep CSNNs
with increasing numbers of hidden layers (see Tab. 6; Methods). As before, networks were either
initialized with traditional Kaiming initialization or with a target membrane potential fluctu-
ation magnitude of σU = 1. We observed that networks with up to two hidden layers showed
good training performance with both initializations (Fig. 6c; Tab. 1). When we increased the
number of hidden layers to four, networks initialized with σU = 1 continued to show good train-
ing performance, while networks initialized with Kaiming initialization failed to train (Fig. 6d;
Tab. 1). Training on CIFAR-10 with ongoing homeostatic plasticity was able to rescue learning
in Kaiming initialized SNNs with four hidden layers.

Since CIFAR-10 is a still image dataset, which lacks temporal dynamics, it is less well suited
for assessing SNNs performance. To check whether our results generalize to other commonly
used SNN datasets, we considered the DVS-Gesture dataset [32], which consists of short videos

SHD CIFAR-10 DVS-Gesture

nH = 3 nH = 7 nH = 2 nH = 4 nH = 6 nH = 8

Kaiming 83.1± 1.2 4.5± 0.0 59.5± 0.8 10.0± 0.0 54.6± 37.1 9.1± 0.0

Kaiming & Hom. - 77.0± 2.9 - 70.3± 0.9 - 82.3± 5.3

Fluct.-driven 82.7± 1.1 83.5± 1.3 62.4± 0.3 65.6± 1.3 86.7± 1.2 86.4± 1.7

Table 1. Test accuracy in percent after training networks with different numbers of hidden lay-
ers and different initializations (Kaiming, Kaiming with homeostatic plasticity and fluctuation-
driven initialization with σU = 1) on the SHD, CIFAR-10, and DVS-Gesture datasets. Errors
correspond to the standard deviation.

12

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

SHD
a

CIFAR-10

DVS-Gesture

b

c d

e f

Figure 6. Fluctuation-driven initializa-
tion enables training of deep SNNs
across multiple datasets. (a) Test ac-
curacy of three-layer CSNNs trained on the
SHD dataset. Networks were initialized either
with standard Kaiming initialization (Kaim-
ing) or fluctuation-driven initialization with
σU = 1. All error bars indicate standard
deviation across five runs. (b) Test accu-
racy of seven-layer CSNNs trained on the
SHD dataset. Networks with Kaiming initial-
ization were additionally trained with ongo-
ing homeostatic plasticity (Kaiming & Hom.
plast.) (c) Same as panel (a), but for two-layer
feed-forward CSNNs trained on the CIFAR-
10 dataset. (d) Same as panel (b), but for
four-layer feed-forward CSNNs trained on the
CIFAR-10 dataset. (e) Same as panel (a), but
for six-layer feed-forward CSNNs trained on the
DVS-Gestures dataset. (f) Same as panel (b),
but for eight-layer feed-forward CSNNs trained
on the DVS-Gestures dataset.

that depict humans performing different hand gestures. These videos were recorded using an
event camera, yielding event-based outputs that can be used to train SNNs on the classification
of the performed gestures. As before, we initialized deep CSNNs with an increasing number of
hidden layers using either Kaiming initialization or a target σU = 1 and compared their test
accuracy after training (see Tab. 6; Methods). We found that networks with up to six hidden
layers could be successfully trained using either Kaiming or our proposed initialization (Fig. 6e;
Tab. 1). However, in six-layer networks, initialization with σU = 1 yielded more reliable training
performance and higher accuracy than Kaiming initialization. When we increased the number of
hidden layers to eight, networks initialized with Kaiming initialization did not train successfully,
while networks initialized with a target σU = 1 continued to show good learning performance
(Fig. 6f; Tab. 1). As already observed on the SHD and CIFAR-10 datasets, training of Kaiming
initialized deep networks could be rescued by adding homeostatic plasticity during training.

Taken together, these findings paint a clear pattern of initialization dependencies across
datasets: Up to a certain number of hidden layers, which is dataset dependent, Kaiming initial-
ization yields good training performance in SNNs. However, when networks become too deep,
vanishing SGs prevent training in networks with Kaiming initialization. In contrast, our pro-
posed initialization strategy enables learning at high performance for deeper networks when the
target fluctuation magnitude is set to σU = 1. As a complementary data-dependent strategy,
homeostatic plasticity can be used to prevent vanishing gradients and rescue learning in deep
networks that were initialized in a suboptimal regime.

Initializing SNNs that obey Dale’s law

Neurons in biological SNNs are separated into excitatory and inhibitory populations, a con-
straint commonly known as Dale’s Law [33]. With added biological constraints, functional

13

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

SNNs constitute an important in-silico model system for computational neuroscience. To ad-
vance the development of biologically constrained SNNs, we extended our initialization theory
to SNNs obeying Dale’s law (see Methods), i.e., in which each hidden layer consists of recur-
rently connected but separate excitatory and inhibitory populations (Fig. 7a). At initialization,
we require a balance between excitatory and inhibitory currents (µU = 0), as is commonly ob-
served in biology [34, 35]. To accomplish such balance, we assume that excitatory and inhibitory
synaptic weights are drawn from independent exponential distributions, whose mean values are
set according to our theory to ensure the desired membrane potential dynamics (Supplementary
Fig. S11). This strategy allowed us to initialize Dalian networks with the same target σU as
non-Dalian networks.

To test whether Dalian networks in the fluctuation-driven regime could be trained to high
accuracy like their non-Dalian counterparts, we first considered fully connected recurrent Dalian
SNNs with one hidden layer trained on the SHD dataset (see Methods). Dalian networks
initialized with σU = 1 accurately solved the SHD task after training for 200 epochs (99.8%±0.0
train & 82.2%±1.2 test accuracy; Fig. 7b). Next, to test the robustness to initialization in Dalian
networks, we initialized Dalian SNNs with different targets σU and trained them on the SHD
dataset. For direct comparison between Dalian SNNs and non-Dalian SNNs, we constructed
SNNs with a total of nh = 160 hidden layer neurons, which were further split into nexc = 128 and
ninh = 32 neurons for the Dalian case (see Tab. 4; Methods). After training, the Dalian networks
exhibited similar robustness to initialization as non-Dalian networks (Fig. 7c). While we did
not observe a large difference between Dalian and non-Dalian networks in validation accuracy,

Three hidden layer CSNN

One hidden layer SNNa b c

d

Inh.

Exc.

Readout

Input

Figure 7. Initialization of Dalian SNNs in the fluctuation-driven regime. (a)
Schematic of a shallow SNN obeying Dale’s law. Excitatory (red) and inhibitory (blue) popula-
tions are recurrently connected, but separate. (b) Snapshot of network activity over time after
training a shallow SNN obeying Dale’s law on the SHD dataset. Bottom: Spike raster of input
layer activity from two samples corresponding to two different classes. Middle: Spike raster of
excitatory (red) and inhibitory (blue) activity in the hidden layer. Top: Membrane potential
of readout units. The readout units corresponding to the two input classes are highlighted in
different shades. (c) Performance comparison of Dalian and Non-Dalian shallow SNNs. Left:
Validation accuracy after training on the SHD dataset as a function of initialization target
σU . The shaded region around the lines indicates the range of values across five random seeds.
The sand-colored shaded region corresponds to our suggested target fluctuation magnitude
1 ≤ ξ ≤ 3. Right: Test error of the five best-performing models in terms of validation accuracy,
for Dalian and Non-Dalian SNNs. Error bars mark ± one standard deviation. (d) As panel
(c), for Dalian and Non-Dalian three-layer CSNNs.

14

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Dalian networks exhibited higher accuracy on the SHD test dataset. This result suggests that
the separation into excitatory and inhibitory populations could provide a functionally beneficial
constraint for SNNs with one recurrently connected hidden layer trained on the SHD dataset.

We wondered whether the better generalization performance of shallow Dalian SNNs would
extend to deeper CSNN network architectures. To address this question, we constructed Dalian
CSNNs with three hidden layers (see Methods). Again, networks were initialized with different
targets σU and trained on the SHD dataset. We found that Dalian CSNNs with three hid-
den layers were more sensitive to initialization than their non-Dalian counterparts (Fig. 7d).
However, when successfully trained, Dalian and Non-Dalian CSNNs resulted in similar test
accuracies.

In summary, our initialization strategy extends to Dalian SNNs with different network archi-
tectures and enables robust training on the SHD dataset. Unexpectedly, constraining networks
with Dale’s law increased generalization accuracy by 7.1% in shallow networks. However, this
effect did not generalize to deep CSNNs. Thus initializing Dalian networks in the fluctuation-
driven regime is beneficial for their training and it will be interesting future work to study
whether and how these findings generalize to larger datasets.

Discussion

We have introduced a general and easy-to-implement initialization strategy for SNNs and shown
that it yields close-to-optimal training speed and classification performance across different
SNN architectures and datasets. To that end, we developed a simple and general theory based
on the notion of fluctuation-driven firing and tested it empirically in numerical simulations.
We found that shallow SNN architectures are surprisingly robust to initialization with small
synaptic weight magnitudes, whereas deep CSNNs require carefully chosen initial weight dis-
tributions that our theory accurately predicts. Further, our analysis showed that suboptimal
initial weight choices result in vanishing or exploding SGs, similar to ANNs. Importantly, for all
network architectures, including deep convolutional, recurrent, and Dalian SNNs, and the dif-
ferent datasets we considered, we found that fluctuation-driven initialization with given target
membrane fluctuations of σU = 1, resulted in stable activity propagation and close-to-optimal
learning performance. Based on our results, we recommend initializing SNNs in the fluctuation-
driven regime using a target σU = 1 for all practical purposes. If activity propagation remains
limited after training, a problem we observed in deeper network architectures, we recommend
the addition of firing rate homeostasis to the training loss either for the entire training process
or transiently during an initial priming period.

Functional SNNs are most commonly obtained by converting a previously trained ANN
[36–40] or through direct training using timing-based methods [41–45] or SGs [5, 6, 46]. While
both approaches can result in well-performing networks, direct training typically leads to sparser
activity levels while also leveraging spike timing which can be beneficial for energy efficiency [47].
The initialization strategy developed in this article mainly applies to direct training approaches
and specifically for SNNs trained with SGs.

Most previous SNN studies relied on weight initialization strategies that were established for
ANNs in which they aim at keeping the variance of gradients constant through time or layers.
For example, Xavier (Glorot) initialization [10] achieves stable variance in the backward pass by
appropriately scaling the initial weight distribution. While the Xavier initialization was origi-
nally developed for linear networks, the Kaiming (He) initialization [11] extends this approach
by explicitly taking into account the ReLU non-linearity, thereby enabling the training of deeper
ReLU networks. While both Xavier and Kaiming initialization posit a scaling of weights by
the number of input neurons as ∼ 1/nin, their profound effects on learning performance largely
result from the different choice of the absolute weight scale, which differs by a factor of two, a
direct consequence of neuronal non-linearity.

15

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Alternatively, the weight scale in the case of SNNs is often determined empirically, however,
there are some proposed initialization strategies, although they often lack a sound theoreti-
cal foundation. For example, Lee et al. [14] proposed to normalize the magnitude of back-
propagated errors across layers by initializing synaptic weights from a uniform distribution
W(l) ∼ U [−

√
3/nl,

√
3/nl], where nl is the number of incoming synapses. However, this approach

was only validated in networks with two hidden layers trained on an event-based version of
the MNIST dataset [48] and requires manual tuning of a per-layer weight scale to define the
spiking threshold. Bellec et al. [49] in turn initialized weights for spiking LSTM models from
a Normal distribution as W(l) ∼ N (0, 1/nl−1), whereas Zenke et al. [5] used a uniform distribu-

tion W(l) ∼ U [−
√

1/nl−1,
√

1/nl−1]. A more intricate approach was developed by Herranz-Celotti
et al. [50], who suggested several conditions on the initial weights that aim, e. g., to balance
the variance of the gradients across time and layers. Based on those conditions, the authors
derived a way to determine the weight scale for a Uniform distribution. While initialization
with an ad-hoc chosen weight scale can support successful training in shallow networks, none of
these studies applied their initialization strategies to network architectures with more than two
hidden layers. However, as shown in this article, shallow network architectures are intrinsically
robust to initialization as long as the weights are small enough while the need for SNN-specific
initialization mainly arises when training deep SNNs. It thus remains an open question whether
these results generalize to deep SNNs.

Recently, Ding et al. [51] proposed an initialization strategy that generalized to deep SNN
architectures. The authors related the magnitude of backpropagating gradients in feed-forward
SNNs to the synaptic weight distribution and proposed a weight scale for normally distributed
synaptic weights that takes into account some parameters of neuronal dynamics, but does not
consider dataset-dependent input parameters. While similar to the approach outlined here, this
initialization strategy is limited to centered weight distributions and feed-forward networks. In
addition, this particular study limited the forward pass to 20 time steps and delta synapses,
compared to 100-500 time steps and current-based synapses in our simulations. Using delta
synapses and a smaller number of time steps can increase the performance of SNNs but does
so at the cost of biologically realistic membrane potential dynamics. How well these results
generalize to recurrently connected SNNs or more biologically plausible membrane dynamics is
unclear.

Our fluctuation-driven initialization strategy follows a similar approach to Glorot et al.
[10] and He et al. [11] by setting a target variance for neuronal activity. However, due to
the non-continuous nature of the spiking non-linearity, we formulated the goal in terms of the
membrane potential variance σU instead of the post-non-linearity activation. Our theory results
in weight scaling that not only accounts for the number of hidden layer neurons but also data-
and architecture-dependent parameters.

In contrast to the above approaches, Mishkin et al. [12] proposed an iterative initialization
strategy to achieve unit variance of neuronal activations at each layer during a pre-training
period. The implementation of a pre-training period is similar to the homeostatic priming period
we applied here. However, instead of setting an explicit target for the population variance, our
homeostatic regularizer tuned per-neuron spiking activity to enable activity propagation.

Our work has several limitations. First, our theory is limited to LIF neurons with current-
based synapses. Although the current-based LIF is by far the most commonly used neuron
model in SNNs, its synaptic dynamics can allow for biologically implausible and undesirable
membrane potential values. Indeed, we found that some neurons exhibit exceptionally small
(u(t)� 0) or large (u(t)� θ) membrane potential values after training, which were not intended
when designing the SGs. Future work could explore the possibility of using conductance-based
synapses or additional regularization losses to constrain membrane potentials to a biologically
plausible range while still allowing for large simulation time steps and thus rapid training.

Second, we performed numerical simulations with a relatively large time step of ∆t = 2 ms.

16

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Choosing the simulation time step marks a trade-off between computational efficiency on one
side and sensitivity of the membrane potential to quickly changing inputs on the other. In-
deed, better performing deep SNNs have been trained using a time step on the order of the
membrane potential time constant [51, 52]. Our choice of simulation time step reflects a com-
promise between minimizing computation time and allowing for sufficiently realistic membrane
dynamics.

Third, our initialization theory for recurrent SNNs and SNNs following Dale’s law, rests
on the assumption of balanced input currents, i.e., µU = 0, similar to what is observed in
neurobiology [19, 20]. Whether and how this balanced state contributes to initial learning phases
in the brain remains an open question for experimental and theoretical neuroscience. However,
in our numerical simulations, sweeps across the parameters of initial weight distribution in
shallow SNNs (Fig. 3) suggest that a slight dominance of inhibition over excitation may represent
a similarly favorable or even more advantageous initial state for learning. Therefore, it equally
remains to be clarified whether unbalanced currents, for example by a slight dominance of
inhibition at initialization, could further support learning in functional SNNs models.

Fourth, our fluctuation-driven initialization theory makes several assumptions that could be
violated in some use cases using real-world data. Our theory assumed that all input neurons
are independent of each other and fire according to a homogeneous Poisson process with a
common firing rate ν. Although we have shown that the systematic bias from violating this
assumption in the Randman and SHD datasets is not too large (Fig. 2), other datasets with
a different spatiotemporal structure could lead to destructive deviations from the theory. As
a result, the current initialization strategy could be improved by taking into account more
complex firing statistics of the input data. Additionally, our derivations neglected the spike
reset of LIFs neurons. While mathematically more complex, it would be possible to consider
the reset dynamics in our derivations using a Fokker-Plank approach [21]. However, given that
the deviations from the theory due to spatiotemporal structure in the data likely outweigh
the contribution of the spike reset, it is questionable whether this extension would confer an
advantage.

Finally, we assumed equal firing rates ν = νdataset for all neurons in a layer in deep SNNs,
and for both excitatory and inhibitory populations in Dalian SNNs. Despite being violated
for most initialization targets (cf. Fig 4), this simplification allowed for effective initialization
with a common target σU = 1 across multiple datasets with vastly different average firing rates
(see Methods). Interestingly, for initialization with target σU = 1 on the SHD dataset, we
indeed observed relatively constant firing rates across layers. A consistent method to estimate
the firing rate distribution in deep layers at the time of initialization could improve the per-
formance of other initialization targets and could potentially enable training of deeper SNNs.
As an alternative approach, dynamic initialization during a pre-training priming period could
be extended to adjust weights by regularizing the output firing rate to a target value in an
iterative fashion. Similar to approaches that have been proposed for ANNs [12], such an it-
erative and dynamic initialization strategy could enable activity propagation and learning in
even deeper SNNs. However, increasing the number of layers in recurrently connected SNNs
did not lead to significant performance improvements in our study. Given the success of deep
ANNs, this suggests either that the datasets used to evaluate SNNs are too simple, or that deep
SNN architectures and learning algorithms are still in their infancy and could be significantly
improved.

In conclusion, the fluctuation-driven initialization proposed in this article facilitates training
of diverse SNN architectures in neuromorphic engineering and computational neuroscience by
striking a balance between seamless applicability and learning performance. Our work also adds
further support to the idea that the fluctuation-driven firing regime, which is widely observed
in the brain, may serve as an optimal initial state for future learning, and specifically for
scenarios in which learning can be seen as an end-to-end optimization problem [53–55]. While

17

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

our work only provides the first step toward more effective SNN initialization, it opens up several
future exciting directions such as initialization in the presence of sparse connectivity or neuronal
cell-type diversity, and suggests that we should take a deeper look at the role of homeostatic
plasticity in dynamically preparing networks for optimal learning performance.

Methods

Learning tasks

We trained SNNs on several synthetic and real-world classification problems with increasing
computational complexity and from different input modalities (auditory, static images, video)
to test our initialization strategy. We chose one synthetic dataset and three real-world datasets
covering different input modalities to generalize our results across different datasets. In the
following, we briefly describe each dataset. The exact specifications of each dataset after pre-
processing are summarized in Table 2.

Synthetic random manifolds (Randman). We used a versatile synthetic classification
dataset based on precise input spike timings drawn from smooth random manifolds as previ-
ously described ([5]; https://github.com/fzenke/randman). The approach allows for flexible
dataset generation with different degrees of complexity by varying the number of classes, the in-
trinsic manifold dimension D, the smoothness parameter α, and the embedding space dimension
M .

Here, we chose parameters to ensure the problem could not be solved by an ANN without
a hidden layer. Specifically, we set the embedding space dimension M = nrandman = 20,
D = α = 1 and generated spike trains of 100 ms duration with 10 different classes for all our
simulation experiments. To account for delays in activity propagation through the network, we
appended 100 ms of no spiking activity to the generated inputs, resulting in a total duration of
Trandman = 200 ms and hence an average input firing rate of νrandman = 5 Hz. Further, we used
the same random seed to generate the dataset for all experiments in which we compare different
initializations to avoid variability due to differences in the dataset. Specifically, we generated a
10-way classification dataset with 1000 samples for each class, 800 of which served as training
data and two sets of 100 samples each served as validation and testing data, respectively.

Spiking Heidelberg Digits (SHD). The SHD dataset [23] is a real-world auditory dataset
containing recordings of spoken digits (0 − 9) in both German and English from different
speakers. It is freely available for download at https://ieee-dataport.org/open-access/

heidelberg-spiking-datasets. To obtain input spikes, the raw audio data was pre-processed
by a biologically inspired cochlear model [23] and mapped into an nSHD = 700 dimensional
input space. As individual input samples are of different duration, we considered only the first
TSHD = 700 ms of each sample, which corresponds to a fraction > 98 % of all input spikes.
Spliced inputs were binned into TSHD

∆t time steps and fed directly into the SNNs. We used a
random subset corresponding to 10% of the training data as a validation set. To evaluate gener-
alization performance, we finally used the standard SHD test dataset which contains data from
separate speakers that were not included in the training dataset.

CIFAR-10. The CIFAR-10 dataset consists of 3x32x32 pixel images belonging to 10 different
classes (6000 images for each class) and is commonly used as a visual classification dataset for
neural networks [56]. The first dimension of the input data corresponds to the three RGB color
channels. As an image dataset, it does not have an intrinsic time dimension in the input. To
translate static images into temporal spiking input, we designed an additional sensory neuron
encoding layer, placed in between the input layer and the first hidden layer, that converts static

18

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://github.com/fzenke/randman
https://ieee-dataport.org/open-access/heidelberg-spiking-datasets
https://ieee-dataport.org/open-access/heidelberg-spiking-datasets

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

images into spike trains. First, each input pixel data was repeated with a fan-out factor of
five along the channel dimension, thereby creating an effective input dimension of 15x32x32 for
each image. Second, each pixel value was multiplied by a gain factor to which a bias term was
added before using the result as a current input to an encoding layer consisting of 15x32x32 LIF
units. The encoding weights for height and width dimensions were tied across all encoding units,
leading to an encoding weight matrix of shape 15x1x1. Thus, each encoding neuron receives
the weighted pixel value of a single color channel as a constant synaptic current and transduces
this value into an output spike train. Synaptic weights of the encoding layer were not subject
to our initialization strategy, but randomly drawn from a normal distribution with mean 0 and
standard deviation ∆t

τsyn
√
nl−1

. Biases of encoding units were randomly drawn from a normal

distribution with mean 0 and standard deviation 1√
nenc

. Both encoding weights and biases

were optimized end-to-end during training. For training, CIFAR-10 images were transformed
to a normalized range [−1, 1] and presented as input to the encoding layer for a duration of
TCIFAR-10 = 100 ms. To obtain an estimate of the firing rate required for the initialization of
hidden layers, we measured the average population firing rate of the encoding layer in response
to the CIFAR-10 training dataset at the time of initialization, resulting in νCIFAR-10 = 14.3 Hz.

DVS128 Gesture Dataset. The DVS-gesture dataset [32] is a standard benchmark for
event-based processing. It consists of 1342 videos of 11 different hand and/or arm gestures
that were recorded with a biologically inspired Dynamic Vision Sensor (DVS), yielding sparse
and asynchronous input spike trains. The data from 23 recorded subjects serve as training data,
while the data from 6 separate subjects serve as test data. Before training, we applied data
augmentation and down-sampling, more specifically (1) random omission of events, (2) down-
sampling of the original recordings, and (3) random temporal crop. First, recorded (binary)
events were dropped with a probability of p = 0.5. Second, the original 2x128x128 pixels
recordings were down-sampled to 2x32x32 pixels. Third, a random 1-second fragment was
extracted from each sample. These 1-second long segments were then binned into 1000 ms

∆t time
steps and used as input to the SNN for TDVS-Gestures = 1000 ms.

Randman SHD CIFAR-10 DVS-Gestures

Duration Tdataset [ms] 200 700 100 1,000
Input dimensions 1 1 2 3
Input neurons ndataset 20 700 32 x 32 2 x 32 x 32
Firing rate νdataset [Hz] 5 15.8 14.3 9.2
Classes 10 20 10 11
Total training samples 8,000 7,340 54,000 1,077

Table 2. Dataset specifications after pre-processing.

Network models

All SNN models were trained with SGs using PyTorch [57]. To this end, we used custom soft-
ware written in Python 3.6.9, which is available on https://github.com/fmi-basel/stork. It
includes the fluctuation-driven initialization methods discussed in this paper and example note-
books to replicate all main findings. For numerical simulations, all models were implemented in
discrete time with a time step ∆t = 2 ms. This time step was a compromise between numerical
integration accuracy and computational and memory efficiency during training.

Neuron model. All units were implemented as simple LIF neurons with exponential current-
based synapses [22]. In discrete time, the membrane potential of neuron i in layer l is charac-

19

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://github.com/fmi-basel/stork

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

terized by the update equation

U
(l)
i [n+ 1] =

(
λmemU

(l)
i [n] + (1− λmem) I

(l)
i [n]

)(
1− S(l)

i [n]
)
, (10)

where U
(l)
i [n] is this neuron’s membrane potential at time step n and S

(l)
i [n] is the associated

binary (spiking) output of this neuron defined as S
(l)
i [n] = Θ

(
U

(l)
i [n]− θ

)
with spike threshold

θ, where Θ is the Heaviside step function. For simplicity, we set θ = 1, so that the resting
membrane potential is zero and the firing threshold is equal to one. The membrane decay vari-

able λmem is determined by the membrane time constant τmem through λmem ≡ exp
(
− ∆t
τmem

)
.

Lastly, I
(l)
i [n] denotes the incoming synaptic current to neuron i at time step n and is defined

as
I

(l)
i [n+ 1] = λsynI

(l)
i [n] +

∑
j

w
(l)
ij S

(l−1)
j [n] +

∑
j

v
(l)
ij S

(l)
j [n] (11)

with the feed-forward weight matrix W and optional recurrent weight matrix V . The synaptic

decay variable λsyn is related to the synaptic time constant through λsyn ≡ exp
(
− ∆t
τsyn

)
. The

neuronal parameters used throughout our simulations can be found in Table 3.
At the beginning of each mini-batch, all neurons were reset to their resting membrane

potential of U
(l)
i [0] = 0 and a non-spiking state S

(l)
i [0] = 0.

Non-Dalian SNNs
Dalian SNNs
(exc. / inh.)

τmem [ms] 20 20 / 20

τsyn [ms] 10 10 / 20

Table 3. Neuronal parameters τmem and τsyn used in the numerical simulations of SNNs.

Readout units. The units in the readout layer are identical to the above neuron model but
were not allowed to spike. Additionally, the membrane time constant of readout units τout could
be different from the hidden layer units. Unless otherwise mentioned, we set τout = Tdata for all
simulations to allow readout units to integrate inputs over the entire stimulus duration.

Dale’s Law. In SNNs obeying Dale’s law (cf. Fig. 7), each hidden layer consists of inde-
pendent excitatory (E) and inhibitory (I) populations of LIF neurons with membrane time
constants τE

mem and τ I
mem, respectively. In discrete time, the membrane potential of each ex-

citatory or inhibitory neuron i in layer l is identical to Eq. (10), where λmem is replaced
with the population-specific decay variables λEmem and λImem, respectively (cf. Tab. 3). Like
in the non-Dalian case, the decay variables are related to the membrane time constants as

λEmem ≡ exp
(
− ∆t
τEmem

)
and λImem ≡ exp

(
− ∆t
τImem

)
. Contrary to the non-Dalian case, the input

currents in Dalian SNNs consist of separate excitatory and inhibitory components originating
from distinct presynaptic populations. For both excitatory and inhibitory populations, the in-
put current can therefore be decomposed into feed-forward excitatory (F), recurrent excitatory
(R), and recurrent inhibitory (I) components, such that

I
(l),E
i [n] = I

(l),FE
i [n] + I

(l),RE
i [n]− I(l),IE

i [n] (12)

I
(l),I
i [n] = I

(l),F I
i [n] + I

(l),RI
i [n]− I(l),II

i [n] . (13)

20

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Thus, both the excitatory and inhibitory populations receive two sources of excitatory and one
source of inhibitory input. In discrete time, the incoming synaptic currents to the excitatory
neuron i of layer l are given as

I
(l),FE
i [n+ 1] = λEsynI

(l),FE
i [n] +

∑
j

w
(l),FE
ij S

(l−1),E
j [n] (14)

I
(l),RE
i [n+ 1] = λEsynI

(l),RE
i [n] +

∑
j

w
(l),RE
ij S

(l),E
j [n] (15)

I
(l),IE
i [n+ 1] = λIsynI

(l),IE
i [n] +

∑
j

w
(l),IE
ij S

(l),I
j [n] , (16)

where λEsyn and λIsyn are the decay variables of excitatory and inhibitory currents, which are

related to their respective synaptic time constants τEsyn and τ Isyn (cf. Tab. 3) as described before.
Similarly, the synaptic currents into inhibitory neuron i of layer l are defined as

I
(l),F I
i [n+ 1] = λEsynI

(l),F I
i [n] +

∑
j

w
(l),F I
ij S

(l−1),E
j [n] (17)

I
(l),RI
i [n+ 1] = λEsynI

(l),RI
i [n] +

∑
j

w
(l),RI
ij S

(l),E
j [n] (18)

I
(l),II
i [n+ 1] = λIsynI

(l),II
i [n] +

∑
j

w
(l),II
ij S

(l),I
j [n] . (19)

Together, the dynamics of each Dalian hidden layer are therefore determined by two feed-
forward weight matrices WFE and WFI and four recurrent weight matrices WRE , WRI , W IE ,
and W II .

Connectivity. Feed-forward and recurrent networks were all-to-all connected without bias
terms unless mentioned otherwise.

We used two types of convolutional networks with 1-dimensional and 2-dimensional con-
volutional kernels (cf. Tabs. 5 and 6). All CSNNs have recurrently connected layers unless
mentioned otherwise. Recurrent connections in CSNNs were implemented as convolutions with
filter kernels of size five and a stride of one. For weight initialization of CSNNs, we set n = fanin,
the number of inputs to each filter.

In SNNs and CSNNs obeying Dale’s law, weights between consecutive layers and recurrent
weights within hidden layers were constrained to be positive both at initialization and contin-
uously during training, except for the readout weights, which were not sign constrained. Both
excitatory and inhibitory populations in hidden layers received feed-forward inputs from the
excitatory population of the previous layer. All networks obeying Dale’s law were fully recur-
rent, featuring recurrent connections within and between excitatory and inhibitory populations
in each layer (E→E, E→I, I→I, and I→E).

Skip connections. We implemented skip connections as additional all-to-all connections with
trainable weights between each except the last hidden layer and the readout layer, such that the
readout units receive a separate input from every hidden layer (cf. Supplementary Fig. S10).

Supervised loss function. All networks were trained by minimizing a standard cross-entropy
loss

Lsup = − 1

K

K∑
k=1

C∑
c=1

ykc log
(
pkc

)
, (20)

21

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

where the one-hot encoded target for input k is denoted by ykc , K is the number of input samples
and C is the number of classes. The associated output probabilities pkc are given by the Softmax
function

pkc =
exp(akc)∑C
i=1 exp(aki)

. (21)

The scores akc for each input k are dependent on the membrane potential of the associated

readout units U
(out)
c and can take different forms. For all simulations in this paper, we defined

the score as the maximum value over all time steps akc = maxn

(
U

(out)
c [n]

)
.

Activity regularization. Unless otherwise mentioned, all networks were subject to activity
regularization to constrain spiking activity. To that end, we added loss terms corresponding to
a soft upper bound on the population-level spiking activity for each layer l as

g(l),k
upper =

 1

M (l)

M(l)∑
i

ζ
(l),k
i − vupper

+

2

, (22)

where ζ
(l),k
i =

(∑N
n S

(l),k
i [n]

)
is the spike count of neuron i in layer l given input sample k and

M (l) is the number of neurons in hidden layer l. In 1-dimensional CSNNs receiving auditory

inputs, we set M (l) = n
(l)
features × n

(l)
neurons and, similarly, in 2-dimensional CSNNs receiving

visual inputs, we set M (l) = n
(l)
features × n

(l)
x × n(l)

y with n
(l)
x and n

(l)
y denoting the number of

x and y coordinates in the layer, respectively. This activity regularization effectively prevents
the population-level activity from exceeding the threshold spike count vupper, which we set to
vupper = Tdata

100 to achieve an upper bound average population firing rate of 10 Hz per layer. The
regularization loss in case of population-level upper bound for spiking activity LUB would thus
be

LUB = −λupper

L∑
l

g(l),k
upper , (23)

where λupper denotes the strength of the regularization.

Homeostatic plasticity. In networks with homeostatic plasticity (cf. Figs. 5 and 6) we added
an additional term to the total loss acting as a per-neuron lower bound on the spiking activity.
This per-neuron lower bound loss on spiking activity LHP was defined as

g
(l),k
lower =

1

M (l)

M(l)∑
i

([
−
(
ζ

(l),k
i − vlower

)]
+

)2

(24)

LHP = −λlower

L∑
l

g
(l),k
lower , (25)

where the first equation describes the per-neuron loss term for each layer l. ζ
(l),k
i corresponds

to the spike count of neuron i in layer l, M (l) is the number of neurons in layer l, vlower denotes
a lower bound on the spike count and λlower is the regularizer strength.
With vlower = 1, this additional regularization term penalizes neurons that do not spike and
thus ensures spiking activity in each neuron. By setting vlower to other positive values one may
achieve a desired lower bound on the per-neuron firing rate.

22

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Surrogate gradient descent. To minimize the loss L, we adjusted network parameters in
the direction of the negative SG. We computed SGs for the parameter updates using BPTT
and the automatic differentiation capabilities of PyTorch [57]. Because the spiking non-linearity
of the spiking neuron model is not differentiable, we approximate its derivative

S′
(
U

(l)
i [n]

)
= Θ′

(
U

(l)
i [n]− θ

)
(26)

with the surrogate

S̃′
(
U

(l)
i [n]

)
= h

(
U

(l)
i [n]− θ

)
. (27)

Throughout this study, we use the SuperSpike surrogate non-linearity [46]

h(x) =
1

(β|x|+ 1)2 (28)

with steepness parameter β = 20. For the simulations of deep CSNNs with a rescaled SG
non-linearity reported in Supplementary Figure S8, we used the re-scaled surrogate derivative

S̃′
(
U

(l)
i [n]

)
=
h
(
U

(l)
i [n]− θ

)
h (θ)

. (29)

In this case, the surrogate derivative at rest is equal to one, i.e., S̃′ (0) = 1, where ”at rest” refers
to the absence of input to the corresponding neuron, causing its membrane potential to remain
at zero. Thus, using this rescaled non-linearity, and in the absence of any membrane potential
fluctuations, gradient magnitudes do not decay during backpropagation over the inactive layers.

Optimizer. We used the SMORMS3 optimizer [25] unless mentioned otherwise. Given a
parameter θ, SMORMS3 performs the following update step after every mini-batch:

g
(θ)
1 :=

(
1− r(θ)

)
g

(θ)
1 + r(θ)

(
∂L
∂θ

)
(30)

g
(θ)
2 :=

(
1− r(θ)

)
g

(θ)
2 + r(θ)

(
∂L
∂θ

)2

(31)

m(θ) := 1 +m(θ)

1−

(
g

(θ)
1

)2

g
(θ)
2 + ε

 , (32)

where r(θ) = 1
m(θ)+1

and ε = 1×10−16 is a small positive value to avoid division by zero. Before

the first training epoch, the optimizer state variables are initialized as g
(θ)
1 = g

(θ)
2 = 0 and

m(θ) = 1. The parameter update after each mini-batch is then performed as

∆θ = −
(
∂L
∂θ

)
min

η,
(
g

(θ)
1

)2

g
(θ)
2 + ε

 1√
g

(θ)
2 + ε

, (33)

where η is the base learning rate.

Overview of network architectures. The diverse network architectures considered in this
article were chosen as a compromise between memory requirements, performance, and training
time. In the following, we provide a brief overview, while giving the precise parameter values
in Tables 4-6.

23

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Fully connected shallow SNNs. In Figure 3 and Supplementary Figures S2, S5 we
implemented fully connected feed-forward SNNs with a single hidden layer. These networks
were trained either on the Randman or the SHD dataset. For both tasks, we used 128 neurons
in the hidden layer and adjusted the sizes of the input and readout layers to match the dataset
requirements. For the fully connected recurrent SNNs used in Figure 7 and Supplementary
Figure S5, we added fully connected recurrent weights to the hidden layer. The recurrent SNNs
in Figure 7 had a wider hidden layer with 160 neurons, to match the number of hidden neurons
in the Dalian network. The exact network specifications are summarized in Table 4.

Randman SHD

No. input neurons 20 700
No. output neurons 10 20
No. hidden neurons 128 128 or 160
Dalian SNNs: No. hidden neurons - 128 exc. / 32 inh.
Mini-batch size 400 400
No. training epochs 200 200

Table 4. Network and training parameters used for simulations of fully connected SNNs with
a single hidden layer on the Randman and SHD datasets.

Fully connected shallow SNNs following Dale’s law. Shallow SNNs following Dale’s law (cf.
Fig. 7) had one hidden layer with 160 neurons, 128 of which were excitatory and 32 inhibitory,
following a four-to-one ratio between excitatory and inhibitory neurons commonly observed in
the mammalian cortex. Dalian networks were fully recurrently connected within the hidden
layer through I → E, I → I, E → I, and E → E connections. Feed-forward connections from
the input to the hidden layer populations were constrained to be excitatory. Readout units
received inputs solely from the excitatory population of the hidden layer, but readout weights
were not subject to a sign constraint.

Deep feed-forward convolutional SNNs. Deep feed-forward CSNNs (cf. Figs. 4, 6; Supple-
mentary Figs. S6, S8), were implemented with up to ten consecutive hidden layers and trained
on the SHD, CIFAR-10, or the DVS-Gesture datasets. CSNNs trained on the CIFAR-10 or
DVS-Gesture datasets additionally implemented a max pooling operation with a kernel size
of 2 × 2 after every second hidden layer. Network sizes and parameters of the convolutional
operations are summarized in Tables 5 and 6. These architectures were chosen to create net-
works of different depths with similar widths while ensuring that deeper layers still contained a
reasonable number of neurons.

Deep recurrent convolutional SNNs. Unless mentioned otherwise, all CSNNs trained on the
SHD dataset additionally implemented recurrent connections in each hidden layer (cf. Figs. 4-
7; Supplementary Figs. S4, S7-S10). Recurrent connections in CSNNs were implemented as
convolutional operations with a kernel size of five and a stride of one. The exact parameters of
recurrent CSNNs trained on the SHD dataset can be found in Table 5.

Deep recurrent CSNNs following Dale’s law. CSNNs following Dale’s law (cf. Fig. 7) were
implemented with separate excitatory and inhibitory populations in each hidden layer. Except
for readout connections, which were not sign constrained, all feed-forward connections were
constrained to be excitatory. As in the case of shallow SNNs following Dale’s law, each hidden
layer consisted of separate excitatory and inhibitory populations. Dalian CSNNs followed the
same architecture as non-Dalian CSNNs (Tab. 5) for excitatory neurons, and each hidden layer
was augmented with an additional population of inhibitory neurons of size Nexc/4. Excitatory
E → I and E → E recurrent connections were implemented as convolutional operations with
a kernel size of 5 and a stride of 1. Inhibitory I → I and I → E recurrent connections were
implemented as convolutional operations with a kernel size of 3 and a stride of 1.

24

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Dataset SHD

No. input neurons 700
No. output neurons 20
No. training epochs 200

No. hidden layers 1 3 7 10

Mini-batch size 400 400 100 100
No. hidden neurons 16 16-32-64 16-32-64-. . .-64 16-32-64-. . .-64
Kernel size (ff) 21 21-7-7 7-5-. . .-5 5
Stride (ff) 10 10-3-3 3-2-. . .-2 2
Padding (ff) 2 2 2 2
No. parameters (ff) 24,858 24,656 99,952 157,520
Kernel size (rec) 5 5 5 5
Stride (rec) 1 1 1 1
No. parameters (rec) 52,734 51,536 208,752 327,760

Table 5. Network and training parameters used for simulations of deep convolutional SNNs
on the SHD dataset.

Dataset CIFAR-10 DVS-Gestures

No. input neurons 32× 32 2× 32× 32
No. output neurons 10 11
No. training epochs 50 20

No. hidden layers 2 4 6 8

Mini-batch size 128 128 16 8
No. hidden neurons 32-32 32-32-64-64 32-32-64-64-128-128 32-32-64-64-128-. . .-128
Kernel size 3× 3 3× 3 3× 3 3× 3
Stride 1 1 1 1
Padding 2 2 2 2
No. parameters 95,456 109,792 308,800 586,816

Table 6. Network and training parameters used for simulations of deep convolutional SNNs
on the CIFAR-10 and DVS-Gestures datasets.

Weight initialization

For fluctuation-driven initialization of synaptic weight parameters, the PSP-kernel parameters
ε̄ and ε̂ introduced in Equations (2) and (3) can be computed analytically or numerically (see
Supplementary Material S1). Because we used a relatively large time step of ∆t = 2 ms for
which there are non-negligible differences between the two, we used the numerical integration
values for all simulations as they are closer to the actual simulation (Tab. 7).

For strictly feed-forward networks, the fluctuation-driven initialization strategy was already
covered in the main text. In the following, we derive the extensions to deep convolutional SNNs,
recurrent SNNs, and SNNs obeying Dale’s law.

Fluctuation-driven initialization of recurrent networks. For the initialization of recur-
rent layers, we introduce the additional parameter 0 < α < 1, that determines the proportion
of membrane potential fluctuations caused by feed-forward connections in contrast to recurrent

25

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Non-Dalian SNNs
Dalian SNNs
(exc. / inh.)

ε̄ 0.0110 0.0110 / 0.0061

ε̂ 0.0020 0.0020 / 0.0012

Table 7. Values of the PSP-kernel integrals ε̄ and ε̂ used for weight initialization in the
numerical simulations, rounded to four decimal places. Due to the large simulation time step
of ∆t = 2 ms, ε̄ and ε̂ were obtained numerically. The analytical expressions for ε̄ and ε̂ can be
found in Supplementary Table S1.

connections:

α =
Part of σ2

U caused by feed-forward connections

Total σ2
U

. (34)

To this end, we consider a postsynaptic LIF neuron receiving feed-forward input from nF
neurons with firing rate νF and recurrent input from nR hidden layer neurons with average
firing rate νR. Feed-forward weights are initialized as W ∼ N (µW , σ

2
W) and recurrent weights

are initialized as V ∼ N (µV , σ
2
V) The mean µU and variance σ2

U of the membrane potential are
then given by

µU = nFµW νF ε̄+ nRµV νRε̄ (35)

σ2
U = nF (σ2

W + µ2
W)νF ε̂+ nR(σ2

V + µ2
V)νRε̂ . (36)

In practice the firing rate νR of the hidden layer is difficult to predict due to finite-size effects.
Hence, we make the simplifying assumption ν = νF = νR = νdataset. In other words, we assume
that the average firing rate of the hidden layers is equal to the input firing rate.

Since we want α to control the membrane potential fluctuations only, which are determined
by σ2

W and σ2
V , we can initialize recurrent and feed-forward weights with a common mean, i.e.,

µWV = µW = µV defined as

µWV =
µU

(nF + nR) νdatasetε̄
(37)

and subsequently solve for σ2
W and σ2

V independently:

σ2
W =

α

nF νε̂

(
θ − µU
ξ

)2

− µ2
WV (38)

σ2
V =

1− α
nRνε̂

(
θ − µU
ξ

)2

− µ2
WV . (39)

In this article, we used α = 0.9 for all simulations with recurrently connected hidden layers
unless stated otherwise, so that the majority of membrane potential fluctuations originate from
feed-forward input.

Fluctuation-driven initialization of Dalian networks. Networks following Dale’s law
consist of separate excitatory and inhibitory populations whose output weights are sign con-
strained. To initialize the sign constrained connections, we relied on exponential or log-normal
weight distributions instead of normally distributed weights, where the choice of a log-normal
distribution is inspired by findings from neurobiology [58].

Parameterizing the excitatory and inhibitory weight distributions with λ for the exponential
and µ for the log-normal distribution, respectively, allows us to obtain explicit expressions for
the initial weight distributions leading to the target membrane potential fluctuations with mean
µU and variance σ2

U . Unless stated otherwise, the weights in Dalian SNNs were initialized using

26

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

the exponential distribution throughout the numerical simulations. While we provide here
the expression for weight initialization using the exponential distribution, a derivation for log-
normally distributed initial weights can be found in the Supplementary Material S3.

We start by observing that, regardless of the weight distribution from which synaptic weights
are sampled, the mean and the variance of the membrane potential of a neuron i in a Dalian
network are defined as

µ
(i)
U =

nE∑
j

wEijνE ε̄E −
nI∑
k

wIikνI ε̄I (40)

(
σ

(i)
U

)2
=

nE∑
j

(wEij)
2νE ε̂E +

nI∑
k

(wIik)
2νI ε̂I , (41)

where we assume equal firing rates νE and νI for all excitatory and inhibitory neurons in our
experiments, respectively.

For weights drawn from exponential distributions, i.e., wE ∼ Exp(λE) and wI ∼ Exp(λI)
with mean 1

λ and variance 1
λ2

, we can rewrite the mean and the variance of the membrane
potential for each neuron as

µU =
nEνE ε̄E
λE

− nIνI ε̄I
λI

(42)

σ2
U = nE

(
1

λ2
E

+

(
1

λE

)2
)
νE ε̂E + nI

(
1

λ2
I

+

(
1

λI

)2
)
νI ε̂I

=
2nEνE ε̂E

λ2
E

+
2nIνI ε̂I
λ2
I

. (43)

We further assume that the target µU = 0, as would be expected in balanced networks. From
the definition of µU , we obtain an explicit relationship between λI and λE

λI = λE
nIνI ε̄I
nEνE ε̄E

, (44)

which we use to define a combined E/I ratio based on network parameters

∆EI =
nIνI ε̄I
nEνE ε̄E

. (45)

Substitution of this relationship into equation (43) gives us

σ2
U =

2nEνE ε̂E
λ2
E

+
2nIνI ε̂I

(λE∆EI)2
. (46)

Finally, we can solve the above for λE

λE =

√
2(∆2

EInEνE ε̂E + nIνI ε̂I)

σU∆EI
. (47)

Together, equations (44) and (47) allow us to parameterize excitatory and inhibitory weights
as a function of σU , taking into account data- and network-dependent parameters, which is
summarized in Table 8. Note that this initialization relies on a target membrane potential
mean µU = 0.

27

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Network
architecture

Weight
distribution

Weight
parameters

Good regime for
initialization

Feed-forward

Centered:
W ∼ N

(
0, σ2

W

) σ2
W =

σ2
U

nνε̂

1

3
≤ σU ≤ 1

Non-centered:
W ∼ N

(
µW , σ

2
W

) µW =
µU
nνε̄

σ2
W =

1

nνε̂

(
θ − µU
ξ

)2

− µ2
W

µU < θ

1 ≤ ξ ≤ 3

Recurrent

Centered:

W ∼ N
(
0, σ2

W

)
V ∼ N

(
0, σ2

V

) σ2
W = α

σ2
U

nF νε̂

σ2
V = (1− α)

σ2
U

nRνε̂

1

3
≤ σU ≤ 1

0 < α < 1

Non-centered:

W ∼ N
(
µWV , σ

2
W

)
V ∼ N

(
µWV , σ

2
V

)
µWV =

µU
(nF + nR) νε̄

σ2
W =

α

nF νε̂

(
θ − µU
ξ

)2

− µ2
WV

σ2
V =

1− α
nRνε̂

(
θ − µU
ξ

)2

− µ2
WV

µU < θ

1 ≤ ξ ≤ 3

0 < α < 1

Table 8. Summary of strategies for fluctuation-driven initialization of SNNs.

Fluctuation-driven initialization of Dalian networks with excitatory recurrence.
Dalian layers are always recurrently connected, as they require a connection between the sep-
arate excitatory and inhibitory populations in each layer. For this reason, the Dalian network
from the above paragraph has recurrent inhibitory connections (I → E and I → I). Here, we
consider the case of additional excitatory recurrence, i.e E → I and E → E connections.

Again, we require inhibitory currents to balance excitatory currents on average to achieve
a mean membrane potential µU = 0. Additionally, similar to non-Dalian SNNs with recur-
rent connections, the parameter α describes the proportion of excitatory membrane potential
fluctuations that are caused by feed-forward excitatory connections, whereas the proportion of
recurrent excitation is given by (1 − α). For the derivation, we consider a single neuron in a
Dalian layer, receiving one recurrent inhibitory (I), one feed-forward excitatory (F), and one
recurrent excitatory (R) input connection. In this setting, mean µU and variance σ2

U of the
membrane potential of that neuron are given by

µU =
NF νF ε̄E
λF

+
NRνRε̄E
λR

− NIνI ε̄I
λI

(48)

σ2
U =

2NF νF ε̂E
λ2
F

+
2NRνRε̂E

λ2
R

+
2NIνI ε̂I
λ2
I

. (49)

For the sake of simpler notation, we assume ν = νF = νR = νI in this derivation. We also
made this assumption of equal firing rates in the application of this initialization strategy in
our numerical simulations. Since it is not possible to estimate the firing rates of excitatory and
inhibitory hidden neuron populations in advance, we chose ν = νdataset.

The ratio of membrane potential fluctuations caused by the excitatory feed-forward connec-
tions compared to the total excitatory input, which we defined as α, can explicitly be written

28

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

as

α =
Part of σ2

U caused by excitatory feed-forward connections

Part of σ2
U caused by all excitatory connections

=

2NF νε̂E
λ2F

2NF νε̂E
λ2F

+ 2NRνε̂E
λ2R

, (50)

which we can solve for λR to obtain

λR = λF

√
αNR

NF − αNF
= λF∆R , (51)

where we introduced the scalar ∆R to make subsequent notation easier. We can then insert
Eq. (51) into Eq. (48)

µU =
NF νε̄E
λF

+
NRνε̄E
λF∆R

− NIνε̄I
λI

(52)

to receive an expression for λI

λI = λF
∆Rε̄INI

∆Rε̄ENF + ε̄ENR
= λF∆R

EI . (53)

We introduce here again a network-parameter dependent scalar ∆R
EI . Using the scalars ∆R and

∆R
EI , we can now substitute both λI and λR in Eq. (49) to obtain

σ2
U =

2NF νε̂E
λ2
F

+
2NRνε̂E

(λF∆R)2 +
2NIνε̂I(
λF∆R

EI

)2 , (54)

which can be solved for λF

λF =

√
2ν
(
(∆R

EI)
2ε̂ENR + ∆2

R

(
∆R
EINF ε̂E +NI ε̂I

))
σU∆R∆R

EI

. (55)

Equations (51), (53) and (55) let us parameterize the initial feed-forward excitatory (F),
recurrent excitatory (R), and recurrent inhibitory (I) weight distributions as a function of the
target membrane potential fluctuations σU with a mean membrane potential µU = 0. The
suggested weight distributions including their parameters and a range of values for a good
initialization are summarized in Table 9.

Kaiming (He) initialization. We implemented Kaiming (He) initialization as described
by He et al. [11]. This commonly used strategy was originally derived for ANNs with ReLU
non-linearities and purports drawing the initial weights from a centered normal distribution

W ∼ N
(

0,
2

n

)
, (56)

where n is the number of neurons and the weights have mean zero and variance σ2
W = 2

n .

29

https://dx.doi.org/10.1088/2634-4386/ac97bb

P
u
b
lish

ed
a
s:

R
o
ssb

ro
ich

,
G
y
g
a
x
,
a
n
d
Z
en

k
e
(2
0
2
2
).

N
eu

ro
m
o
rp
h
C
o
m
p
u
t
E
n
g
1
0
.1
0
8
8
/
2
6
3
4
-4
3
8
6
/
a
c9
7
b
b

Network
architecture

Weight
distribution

Weight parameters
Good regime for

initialization

Feed-forward
WE ∼ Exp (λE)

WI ∼ Exp (λI)
λE =

√
2(∆2

EInEνE ε̂E + nIνI ε̂I)

σU∆EI

λI = ∆EIλE

∆EI = nIνI ε̄I
nEνE ε̄E

µU = 0

1

3
≤ σU ≤ 1

Recurrent

WF ∼ Exp (λF)

WR ∼ Exp (λR)

WI ∼ Exp (λI)

λF =

√
2ν
(
(∆R

EI)
2ε̂ENR + ∆2

R

(
∆R
EINF ε̂E +NI ε̂I

))
σU∆R∆R

EI

λR = λF∆R

λI = λF∆R
EI

∆R =

√
αNR

NF − αNF

∆R
EI =

∆Rε̄INI

∆Rε̄ENF + ε̄ENR

µU = 0

1

3
≤ σU ≤ 1

0 < α < 1

Table 9. Summary of strategies for fluctuation-driven initialization of Dalian SNNs.

30

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Acknowledgments

This work was supported by the Novartis Research Foundation and the Swiss National Science
Foundation [grant number PCEFP3 202981].

Author contributions

F.Z. conceived the study. J.R., J.G., and F.Z. wrote simulation code. J.R. and J.G. performed
simulations and analyses. J.R., J.G., and F.Z. wrote the manuscript.

Competing interests

The authors declare no competing interests.

References

[1] Sterling, P. and Laughlin, S. Principles of Neural Design. The MIT Press, 2017.

[2] Indiveri, G., Linares-Barranco, B., Hamilton, T., Schaik, A. van, Etienne-Cummings, R.,
Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs,
G., Arthur, J., Hynna, K., Folowosele, F., Säıghi, S., Serrano-Gotarredona, T., Wijekoon,
J., Wang, Y., and Boahen, K. “Neuromorphic Silicon Neural Circuits”. In: Frontiers in
Neuroscience 5 (2011).

[3] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. “Exponential expres-
sivity in deep neural networks through transient chaos”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. Vol. 29. Curran Associates, Inc., 2016.

[4] Hunsberger, E. and Eliasmith, C. Spiking Deep Networks with LIF Neurons. Version 1.
2015. arXiv: 1510.08829 [cs.LG].

[5] Zenke, F. and Vogels, T. P. “The Remarkable Robustness of Surrogate Gradient Learning
for Instilling Complex Function in Spiking Neural Networks”. In: Neural computation 33.4
(2021), pp. 899–925.

[6] Neftci, E. O., Mostafa, H., and Zenke, F. “Surrogate Gradient Learning in Spiking Neural
Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Net-
works”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63.

[7] Hochreiter, S. “Untersuchungen zu dynamischen neuronalen Netzen”. MA thesis. Tech-
nische Universität München, 1991.

[8] Hochreiter, S. and Schmidhuber, J. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[9] Pascanu, R., Mikolov, T., and Bengio, Y. “On the difficulty of training recurrent neural
networks”. In: ICML. 2013.

[10] Glorot, X. and Bengio, Y. “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Ed. by Teh, Y. W. and Titterington, M. Vol. 9. Proceedings of
Machine Learning Research. PMLR, 2010, pp. 249–256.

[11] He, K., Zhang, X., Ren, S., and Sun, J. “Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification”. In: 2015 IEEE International Conference
on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015, pp. 1026–1034.

31

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://arxiv.org/abs/1510.08829

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

[12] Mishkin, D. and Matas, J. All you need is a good init. Version 7. 2015. arXiv: 1511.06422
[cs.LG].

[13] Srivastava, R. K., Greff, K., and Schmidhuber, J. Training Very Deep Networks. Version 2.
2015. arXiv: 1507.06228 [cs.LG].

[14] Lee, J. H., Delbruck, T., and Pfeiffer, M. “Training deep spiking neural networks using
backpropagation”. In: Frontiers in Neuroscience 10 (2016).

[15] Ledinauskas, E., Ruseckas, J., Juršėnas, A., and Buračas, G. Training Deep Spiking Neural
Networks. Version 1. 2020. arXiv: 2006.04436 [cs.CV].

[16] Tiesinga, P. H., José, J. V., and Sejnowski, T. J. “Comparison of current-driven and
conductance-driven neocortical model neurons with Hodgkin-Huxley voltage-gated chan-
nels”. In: Physical review. E, Statistical physics, plasmas, fluids, and related interdisci-
plinary topics 62.6 Pt B (2000), pp. 8413–8419.

[17] “Neuronal integration of synaptic input in the fluctuation-driven regime”. In: The Journal
of neuroscience: the official journal of the Society for Neuroscience 24.10 (2004), pp. 2345–
2356.

[18] Petersen, P. C. and Berg, R. W. “Lognormal firing rate distribution reveals prominent
fluctuation-driven regime in spinal motor networks”. In: eLife 5 (2016), e18805.

[19] Vogels, T. P., Rajan, K., and Abbott, L. F. “Neural network dynamics”. In: Annual Review
of Neuroscience 28 (2005), pp. 357–376.

[20] Brunel, N. “Dynamics of sparsely connected networks of excitatory and inhibitory spiking
neurons”. In: Journal of Computational Neuroscience 8.3 (2000), pp. 183–208.

[21] Amit, D. J. and Brunel, N. “Model of global spontaneous activity and local structured ac-
tivity during delay periods in the cerebral cortex”. In: Cerebral cortex 7.3 (1997), pp. 237–
252.

[22] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. Neuronal Dynamics: From Single
Neurons to Networks and Models of Cognition. Cambridge University Press, 2014.

[23] Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. “The Heidelberg Spiking Data
Sets for the Systematic Evaluation of Spiking Neural Networks”. In: IEEE Transactions
on Neural Networks and Learning Systems (2020), pp. 1–14.

[24] Yin, B., Corradi, F., and Bohte, S. M. Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks. 2021. doi: 10.48550/ARXIV.2103.12593.

[25] Funk, S. RMSprop loses to SMORMS3 - Beware the Epsilon! https://sifter.org/

simon/journal/20150420.html. Accessed: 2022-4-20. 2015.

[26] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic Optimization”. en. In:
arXiv:1412.6980 (Jan. 2017). arXiv:1412.6980 [cs].

[27] Turrigiano, G. G. and Nelson, S. B. “Homeostatic plasticity in the developing nervous
system”. en. In: Nature reviews. Neuroscience 5.2 (Feb. 2004), pp. 97–107.

[28] Gjorgjieva, J., Evers, J. F., and Eglen, S. J. “Homeostatic Activity-Dependent Tuning of
Recurrent Networks for Robust Propagation of Activity”. In: The Journal of Neuroscience
36.13 (2016), pp. 3722–3734.

[29] Zenke, F. and Gerstner, W. “Hebbian plasticity requires compensatory processes on mul-
tiple timescales”. In: Philosophical Transactions of the Royal Society B 372.1715 (2017),
p. 20160259.

[30] Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway Networks. 2015. arXiv: 1505.
00387 [cs.LG].

32

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1507.06228
https://arxiv.org/abs/2006.04436
https://doi.org/10.48550/ARXIV.2103.12593
https://sifter.org/simon/journal/20150420.html
https://sifter.org/simon/journal/20150420.html
https://arxiv.org/abs/1505.00387
https://arxiv.org/abs/1505.00387

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

[31] He, K., Zhang, X., Ren, S., and Sun, J. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[32] Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C., Nayak, T., An-
dreopoulos, A., Garreau, G., Mendoza, M., Kusnitz, J., Debole, M., Esser, S., Delbruck,
T., Flickner, M., and Modha, D. “A Low Power, Fully Event-Based Gesture Recogni-
tion System”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2017, pp. 7388–7397.

[33] Eccles, J. C., Fatt, P., and Koketsu, K. “Cholinergic and inhibitory synapses in a pathway
from motor-axon collaterals to motoneurones”. In: The Journal of physiology 126.3 (1954),
pp. 524–562.

[34] Rupprecht, P. and Friedrich, R. W. “Precise Synaptic Balance in the Zebrafish Homolog
of Olfactory Cortex”. In: Neuron 100.3 (2018), 669–683.e5.

[35] Spiegel, I., Mardinly, A. R., Gabel, H. W., Bazinet, J. E., Couch, C. H., Tzeng, C. P.,
Harmin, D. A., and Greenberg, M. E. “Npas4 regulates excitatory-inhibitory balance
within neural circuits through cell-type-specific gene programs”. In: Cell 157.5 (2014),
pp. 1216–1229.

[36] Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. “Backpropaga-
tion for Energy-Efficient Neuromorphic Computing”. In: Advances in Neural Information
Processing Systems. Ed. by Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett,
R. Vol. 28. Curran Associates, Inc., 2015.

[37] Hunsberger, E. and Eliasmith, C. Training spiking deep networks for neuromorphic hard-
ware. Version 1. 2016. arXiv: 1611.05141 [cs.LG].

[38] Cao, Y., Chen, Y., and Khosla, D. “Spiking Deep Convolutional Neural Networks for
Energy-Efficient Object Recognition”. In: International journal of computer vision 113.1
(2015), pp. 54–66.

[39] O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. “Real-time classification
and sensor fusion with a spiking deep belief network”. In: Frontiers in neuroscience 7
(2013), p. 178.

[40] Bu, T., Ding, J., Yu, Z., and Huang, T. Optimized Potential Initialization for Low-latency
Spiking Neural Networks. 2022. arXiv: 2202.01440 [cs.NE].

[41] Bohte, S. M., Kok, J. N., and La Poutré, H. “Error-backpropagation in temporally encoded
networks of spiking neurons”. In: Neurocomputing 48.1-4 (2002), pp. 17–37.

[42] Booij, O. and Nguyen, H. “A gradient descent rule for spiking neurons emitting multiple
spikes”. In: Information Processing Letters 95.6 (2005), pp. 552–558.

[43] Mostafa, H. “Supervised Learning Based on Temporal Coding in Spiking Neural Net-
works.” In: IEEE transactions on neural networks and learning systems 29.7 (2018),
pp. 3227–3235.

[44] Kheradpisheh, S. R. and Masquelier, T. “Temporal Backpropagation for Spiking Neural
Networks with One Spike per Neuron”. In: International Journal of Neural Systems 30.06
(2020), p. 2050027.

[45] Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and Alakuijala, J.
“Temporal Coding in Spiking Neural Networks with Alpha Synaptic Function”. In: 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 8529–8533.

[46] Zenke, F. and Ganguli, S. “SuperSpike: Supervised Learning in Multilayer Spiking Neural
Networks”. In: Neural computation 30.6 (2018), pp. 1514–1541.

33

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://arxiv.org/abs/1611.05141
https://arxiv.org/abs/2202.01440

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

[47] Davidson, S. and Furber, S. B. “Comparison of Artificial and Spiking Neural Networks
on Digital Hardware”. In: Frontiers in Neuroscience 15 (2021).

[48] Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. “Converting Static Image
Datasets to Spiking Neuromorphic Datasets Using Saccades”. In: Frontiers in neuroscience
9 (2015), p. 437.

[49] Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. “Long short-term
memory and learning-to-learn in networks of spiking neurons”. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. Curran Associates
Inc., 2018, pp. 795–805.

[50] Herranz-Celotti, L. and Rouat, J. Surrogate Gradients Design. 2022. arXiv: 2202.00282
[cs.AI].

[51] Ding, J., Zhang, J., Yu, Z., and Huang, T. Accelerating Training of Deep Spiking Neural
Networks with Parameter Initialization. 2022. url: https://openreview.net/forum?
id=T8BnDXDTcFZ.

[52] Na, B., Mok, J., Park, S., Lee, D., Choe, H., and Yoon, S. AutoSNN: Towards Energy-
Efficient Spiking Neural Networks. 2022. arXiv: 2201.12738 [cs.NE].

[53] Marblestone, A. H., Wayne, G., and Kording, K. P. “Toward an Integration of Deep
Learning and Neuroscience”. In: Frontiers in Computational Neuroscience 10 (2016).

[54] Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A.,
Clopath, C., Costa, R. P., Berker, A. d., Ganguli, S., Gillon, C. J., Hafner, D., Kepecs,
A., Kriegeskorte, N., Latham, P., Lindsay, G. W., Miller, K. D., Naud, R., Pack, C. C.,
Poirazi, P., Roelfsema, P., Sacramento, J., Saxe, A., Scellier, B., Schapiro, A. C., Senn,
W., Wayne, G., Yamins, D., Zenke, F., Zylberberg, J., Therien, D., and Kording, K. P.
“A deep learning framework for neuroscience”. In: Nature Neuroscience 22.11 (2019),
pp. 1761–1770.

[55] Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G. “Backpropagation
and the brain”. In: Nature Reviews Neuroscience 21 (2020), pp. 335–346.

[56] Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Tech. rep. 2009.

[57] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. “PyTorch:
An Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by Wallach, H., Larochelle, H., Beygelzimer, A.,
d’Alché-Buc, F., Fox, E., and Garnett, R. Curran Associates, Inc., 2019, pp. 8024–8035.

[58] Buzsáki, G. and Mizuseki, K. “The log-dynamic brain: how skewed distributions affect
network operations”. In: Nature Reviews Neuroscience 15 (2014), pp. 264–278.

34

https://dx.doi.org/10.1088/2634-4386/ac97bb
https://arxiv.org/abs/2202.00282
https://arxiv.org/abs/2202.00282
https://openreview.net/forum?id=T8BnDXDTcFZ
https://openreview.net/forum?id=T8BnDXDTcFZ
https://arxiv.org/abs/2201.12738

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Supplementary Figures

a b c
Mean-driven

Figure S1. Initialization in the fluctuation-driven regime with non-zero µU. (a)
Different fluctuation targets ξ plotted in the space spanned by the parameters of a non-centered
Gaussian weight distribution W ∼ N (µW , σW). The red region indicates the regime of mean-
driven initialization, where µU > θ. The border between fluctuation- and mean-driven regime
is dependent on data and network parameters. (b) Expected and observed distributions of the
membrane potential for different values of the target membrane potential mean µU . All three
displayed initializations lead to fluctuations of the same magnitude ξ = 2. (c) The standard
deviation of the weights σW as a function of the target µU for different fluctuation targets ξ.

35

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Randman

SHD

a

e

d

b c

h

f g

Figure S2. Activity of shallow SNNs at time of initialization in the fluctuation-
driven regime. (a) Snapshot of activity over time before training on the Randman dataset
for an SNN with one hidden layer. Bottom: spike raster of input layer activity from two
different samples corresponding to two different classes. Middle: Spike raster of hidden layer
activity. Top: Membrane potential of readout units. The readout units corresponding to the
two input classes are highlighted in different shades. The network was initialized with a target
σU = 1. (b) Distribution of the coefficient of variation (CV) of inter-spike intervals (ISIs) of
hidden layer neurons. (c) Standard deviation of the population firing rate filtered with a time
constant of 5 ms. The histogram depicts the distribution of σRate across different input samples.
(d) Theoretically expected (Supplementary Material S2) and numerically observed proportion
of mean-driven neurons at the time of initialization as a function of the target fluctuation
magnitude σU , for networks that are initialized to be trained on the Randman dataset (±1
standard deviation). The sand-colored shaded region indicates the target regime 1/3 ≤ σU ≤ 1.
(e)-(h) Same as panels (a)-(d), for the SHD dataset.

36

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

0.0 0.5
Time [s]

0

25

50

75

100

In
pu

t n
eu

ro
n

Input spike trains

0.0 0.5
Time [s]

2

1

0

1

2
u(

t)

Membrane potential ui(t)

2

1

0

1

2

Distr. of Ui

2 0 2
U

Simulation
Theory

0.2 0.4
2
U

0.4 0.6
U

a b c

d e f

Figure S3. Population-level variability induced by random sampling of synaptic
weights. (a) Poisson input spike trains. (b) Membrane potentials ui(t) of three example
neurons that were initialized with the same target µU = 0 and σU = 1/2. (c) Corresponding
distributions of the membrane potentials Ui for each of the three example neurons in panel (B).
The black dashed line indicates the target membrane potential distribution U ∼ N (µU , σ

2
U).

Note that the observed means µ̂Ui of the three membrane potential distributions deviate from
the target. (d) The analytically expected and numerically observed distribution of µ̂U follows
a Gaussian. Numerical simulations consider 5000 postsynaptic neurons initialized with the
same target µU = 0 and σU = 1/2. Even when the target is set clearly in the fluctuation-
driven regime, a proportion of neurons can be expected to be mean-driven. (e) The observed
membrane potential variances σ̂2

U follow a Gamma distribution. (f) The observed standard
deviations of the membrane potential σ̂U are Nakagami distributed. For the derivations of
analytical solutions in panels (d)-(e), see Supplementary Material S2.

37

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

One hidden layer SNN

Three hidden layer CSNN

a b c

d e

Figure S4. Sparsity of spiking activity before and after training. (a) Population
firing rate of SNNs with one hidden layer before training (black) and after training with (blue)
and without (green) regularization of the population firing rate. The shaded region around the
lines indicates the standard deviation across five random seeds. The sand-colored shaded region
corresponds to our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1. The horizontal dashed
line at 10 Hz indicates the upper bound imposed by the activity regularization. (b) Distribution
of firing rates of single neurons in an example network initialized with σU = 1 before training
(black) and after training with (blue) and without (green) activity regularization through an
upper bound on the population firing rate. The dashed line indicates the position of the firing
rate regularizer at 10 Hz. (c) Test error of the five best-performing networks trained with and
without the firing rate regularizer. (d) As panel (a), but depicting average population firing
rates in each hidden layer of CSNNs with three hidden layers. (e) As panel (c), for CSNNs
with three hidden layers.

38

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Figure S5. Fluctuation-driven initialization of recurrent SNNs. (a) Validation ac-
curacy after training as a function of the target fluctuation magnitude σU at initialization for
SNNs with one hidden layer featuring only forward or additional recurrent connections. The
shaded region around the lines indicates the range of values across five random seeds. The sand-
colored shaded region corresponds to our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1.
(b) Population firing rate of hidden layer neurons at the time of initialization as a function of
σU . Recurrent connections cause the firing rate to increase through a positive feedback loop
when the initial fluctuation magnitude is large. (c) As panel (a), for recurrent SNNs initialized
with different relative magnitudes of recurrent connections α (see Methods). Large values of α
increase the contribution of feed-forward connections to membrane potential fluctuations. (d)
As panel (b), for for recurrent SNNs initialized with different values of α.

Figure S6. Deep feed-forward CSNNs are sensitive to initialization. Validation
accuracy as a function of target membrane potential fluctuation strength σU for strictly feed-
forward CSNNs of increasing depth. All networks were trained on the SHD dataset. The shaded
region around the lines indicates the range of values across five random seeds. The sand-colored
shaded region corresponds to our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1. The
dashed line indicates Kaiming initialization.

39

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

a b

c d

3 hidden layers1 hidden layer

Figure S7. Fluctuation-driven initialization accelerates learning. (a) Training accu-
racy as a function of training epoch for CSNNs with a single hidden layer trained on the SHD
dataset. Networks were initialized with different target fluctuation magnitudes σU . The dashed
line indicates 90% training accuracy. (b) As panel (a), for CSNNs with three hidden layers. (c)
Number of required epochs to reach 90% training accuracy on the SHD dataset as a function
of target fluctuation magnitude σU for CSNNs with a single hidden layer. Triangular markers
correspond to the values of σU plotted in panel (a) and the sand-colored region corresponds to
our suggested target fluctuation magnitude 1

3 ≤ σU ≤ 1. (d) As panel (c), for CSNNs with three
hidden layers. In all panels, shaded regions indicate ±1 standard deviation across 5 random
initializations.

40

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

a b c

d e f

Figure S8. Re-scaled surrogate gradients can prevent vanishing gradients at the
cost of exploding gradients. (a) Population firing rate at time of initialization as a function
of hidden layers in a CSNN with seven hidden layers, for different target fluctuation magnitudes
σU . The shaded region around the lines indicates one standard deviation across five random
seeds. (b) The magnitude of surrogate gradients ∂L/∂S̃ as a function of hidden layer. The
network is being trained with a re-scaled version of the SuperSpike non-linearity that ensures
propagation of gradients even in the absence of spikes (see Methods). For initializations with
σU ≥ 1, the gradients explode. (c) As panel (a), but displaying the magnitude of weight
changes |∂L/∂W |. When neurons in the previous layer are quiescent, the weight update equals
zero. (d)-(f) As panels (a)-(c), for a CSNN without recurrent connections in hidden layers.

41

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Feed-forwarda b

c

Recurrent

d

Figure S9. Robustness to weight initialization is sensitive to the choice of optimizer.
(a) Validation accuracy after training as a function of the target fluctuation magnitude σU at
initialization for feed-forward CSNNs with three hidden layers trained on the SHD dataset.
Networks were either trained with SGD with learning rate η or with the Adam or SMORMS3
optimizers (see Methods). The shaded region around the lines indicates one standard deviation
across five random seeds. (b) As Panel (a), for recurrently connected CSNNs with three hidden
layers. (c) Validation loss as a function of training epochs for the best-performing feed-forward
networks of each optimization scheme plotted in panel (a). (d) As panel (c), for the recurrently
connected CSNNs plotted in panel (b).

a b c dReadout

Hidden 2

Hidden 3

Hidden 1
Skip
connections

Input

Figure S10. Skip connections can increase robustness to initialization in deep
CSNNs. (a) Illustration of skip connections in deep CSNNs. Readout units receive inputs
from every hidden layer separately. (b) Validation accuracy after training CSNNs with three
hidden layers either with (colored line) or without skip connections on the SHD dataset. The
shaded region around the lines indicates the range of values across five random seeds. (c) As
panel (b), but the colored line corresponds to networks with both skip connections and homeo-
static plasticity. (d) Test accuracy of the 5 best-performing models in terms of validation
accuracy for models trained with skip connections, combined skip connections and homeostatic
plasticity and the baseline model.

42

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

���������������� �����������

�����
�	�

(i) (ii) (iii)
Exc.

Inh.

Figure S11. Parameterization of fluctuation-driven spiking as an initialization stra-
tegy for Dalian SNNs. Incoming presynaptic Poisson spike trains (i) from separate excitatory
(red) and inhibitory (blue) populations are weighted by the respective synaptic strengths WE

and W I and filtered through the respective PSP kernels εE(t) and εI(t) (ii) to yield membrane
potential fluctuations u(t) in a postsynaptic neuron (iii). As in the non-Dalian case, the magni-
tude of membrane potential fluctuations, σU , is determined by the parameters of the presynaptic
weight distributions, λE and λI . Synaptic weights can thus be initialized from a target σU (see
Methods).

43

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Supplementary Material

S1 PSP kernel parameters

Current-based synapses. The parameters ε̄ and ε̂ characterize the integral of the PSP kernel
ε(t), and the integral of the squared PSP kernel ε(t)2, respectively:

ε̄ =

∫ ∞
−∞

ε(s)ds (57)

ε̂ =

∫ ∞
−∞

ε(s)2ds . (58)

To arrive at analytical expressions for ε̄ and ε̂, we first derive the kernel ε(t) from the differential
equations of a LIF neuron [1]

τmem
du(t)

dt
= −u(t) + I(t) (59)

dI(t)

dt
= −I(t)

τsyn
+
∑
j

wjSj(t) , (60)

where τmem and τsyn are the membrane and synaptic time constants, Sj(t) are the input spike
trains from the presynaptic neuron j weighted by the synaptic weight wj , u(t) is the membrane
potential and I(t) is the current.
To obtain an expression for the kernel ε(t), we consider that neuron i receives a single spike
from one presynaptic neuron j at time t = 0 with a synaptic weight of wj = 1. In this case, the
synaptic current is simply

I(t) = exp

(
− t

τsyn

)
, (61)

which can be inserted into equation (59) to obtain an explicit solution for the membrane po-
tential

u(t) =
1

1− τmem
τsyn

(
exp

(
− t

τsyn

)
− exp

(
− t

τmem

))
Θ(t) . (62)

Eq. (62) corresponds to the PSP-kernel ε(t) evoked by a single presynaptic spike, provided that
the membrane potential stays in the sub-threshold regime. Note that in the limit of τmem → τsyn,
the membrane potential follows a scaled alpha function

lim
τmem→τsyn

u(t) =
t

τsyn
exp

(
− t

τmem

)
Θ(t) . (63)

We can now solve the integrals in Eqs. (57) and (58) that define the kernel parameters ε̄ and ε̂,
starting with τmem 6= τsyn:

ε̄ =

∫ ∞
−∞

ε(t)dt

=

∫ ∞
0

1

1− τmem
τsyn

(
exp(− t

τsyn
)− exp(− t

τmem
)

)
dt

=
1

1− τmem
τsyn

(
−τsyn exp

(
− t

τsyn

)
+ τmem exp

(
− t

τmem

)) ∣∣∣∣∣
∞

0

= τsyn (64)

44

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

ε̂ =

∫ ∞
−∞

ε2(t)dt

=

∫ ∞
0

[
1

1− τmem

τsyn

(
exp

(
− t

τsyn

)
− exp

(
− t

τmem

))]2
dt

=

(
1

1− τmem

τsyn

)2(2τmemτsyn exp
(
− t
τsyn
− t

τmem

)
τsyn + τmem

τsyn exp
(
−2 t

τsyn

)
2

−
τmem exp

(
−2 t

τmem

)
2

)∣∣∣∣∣
∞

0

=
τ2syn

2(τsyn + τmem)
. (65)

When solving for ε̄ and ε̂ in the case of τmem = τsyn (taking the limτmem→τsyn and applying
de L’Hospital’s rule), one will arrive at the same solutions as in the above case (see Tab. S1).

Delta-Synapses. For reasons of simplicity, current-based synaptic transmission is often re-
placed with ’delta synapses’ in SNNs. In this case, the membrane potential dynamics in response
to a single input spike can be described as a mono-exponential decay

u(t) = exp

(
− t

τmem

)
(66)

and the kernel parameters simplify to

ε̄ =

∫ ∞
−∞

ε(t)dt =

∫ ∞
0

exp

(
− t

τmem

)
dt = τmem (67)

ε̂ =

∫ ∞
−∞

ε2(t)dt =

∫ ∞
0

[
exp

(
− t

τmem

)]2

dt =
τmem

2
. (68)

A summary of analytical expressions for ε̄ and ε̂ can be found in Tab. S1.

Numerical estimation of ε̄ and ε̂. Note that the analytical solutions summarized in Tab. S1
might not reflect the values of ε̄ and ε̂ obtained in numerical simulations of the SNNs employing
the neuronal dynamics. Specifically, numerical simulations of SNNs often operate with a large
time step and integrate neuronal dynamics using simple forward Euler approaches. A more ac-
curate approach with regards to the fluctuations in numerical simulations would therefore be to
solve the integrals using the same numerical approximation as employed during the simulations.
To quantify the degree to which the analytical solutions for ε̄ and ε̂ deviate from the numer-
ical approximations of the integrals, we numerically approximated the integrals with different
values for the simulation time step. Indeed, if the simulation time step was large (≥ 1 ms), the
numerical solution substantially deviated from the analytical solution (Fig. S12). Hence, for all
numerical simulations in this paper, we calculated ε̄ and ε̂ through numerical approximation
(forward Euler) using the same time step as during SNN training. The numerical values for ε̄
and ε̂ used throughout our numerical simulations can be found in Tab. 7 of the main text.

45

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

10 1 100 101

Time step [ms]

0

50

100

150
De

vi
at

io
n

[%
]

10 1 100 101

Time step [ms]

0

20

40

60

De
vi

at
io

n
[%

]

W

a b

Figure S12. Numerical calculation of ε̄ and ε̂. (a) Difference (in % of the analytical
solution) between numerically calculated and analytically calculated ε̄ and ε̂ as a function of the
simulation time step. (b) The resulting difference in the standard deviation of synaptic weights
σW using fluctuation-driven initialization.

Delta synapses Current-based synapses

ε̄ τmem τsyn

ε̂ τmem
2

τ2syn
2(τsyn+τmem)

Table S1. Analytical expressions for ε̄ and ε̂ for LIF neurons with delta synapses or current-
based synapses.

46

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

S2 Population-level variability in membrane potential fluctuations

The initialization strategy discussed in this article is based on target values for the membrane
potential mean µU and its standard deviation σU . Due to the inherent stochasticity arising
from random sampling of synaptic weights, we can expect deviations from these targets in the
numerically observed membrane potential with mean µ̂U and σ̂U . As illustrated in Figs. 2
and S2 in the main text, this variability can cause some neurons to fire in the mean-driven
regime, even if the initialization targets are set in the fluctuation-driven regime.

Here, we analyze the expected variability of membrane potential fluctuations across a pop-
ulation of m postsynaptic neurons with independently drawn weight vectors {~w1, ~w2, ... ~wm}.
Specifically, we are interested in the sampling distributions of µ̂U and σ̂2

U . For simplicity, we
ignore the spiking dynamics of the LIF neuron model and assume that synaptic weights are
independently drawn from the zero-mean Normal distribution W ∼ N (0, σ2

W).

Sampling distribution of µW and σW . In order to derive the sampling distributions of the
membrane potentials, we first need to derive the sampling distribution of the synaptic weights.
That is, for independently drawn weight vectors {~w1, ~w2, ... ~wm} of size n, we are interested in
the distributions of the sample mean µ̂W and the sample variance σ̂W . For weights drawn from
the zero-mean distribution W ∼ N (0, σ2

W), the former is simply

µ̂W ∼ N
(

0,
σ2
W

n

)
. (69)

To obtain the sampling distribution of the variance, we first observe that, according to Cochran’s
Theorem [2],

n
σ̂2
W

σ2
W

∼ χ2
n−1 , (70)

which we can alternatively express as a special case of a Gamma distribution Γ (k, θ) with shape
parameter k = n−1

2 and scale parameter θ = 2. Hence the above equation can be written as

n
σ̂2
W

σ2
W

∼ Γ

(
n− 1

2
, 2

)
. (71)

Using the scaling property of the gamma function, we can solve Eq. (71) for σ̂2
W under the

requirement
σ2
W
n > 0. This holds as long as we have variance in the weight initialization. Hence

we can express the distribution of the sample variance σ̂2
W as

σ̂2
W ∼ Γ

(
n− 1

2
,
2σ2

W

n

)
. (72)

Sampling distribution of µ̂U . We start by observing that the membrane potential U is
normally distributed according to the Central Limit Theorem and its mean µU and variance σ2

U

were given in Eqs. (4) and (5) in the main text (see Fig. 1). To derive the sampling distribution
of µ̂U , we observe that the sample µ̂U is related to µ̂W through

µ̂U = nνε̄µ̂W . (73)

From the above equation and our derivation of the sampling distribution of µ̂W , it becomes
apparent that

µ̂U ∼ N
(

0, n2ν2ε̄2
(
σ2
W

n

))
, (74)

47

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

which can be further simplified to

µ̂U ∼ N
(

0, σ2
U

νε̄2

ε̂

)
(75)

by expressing it in terms of the initialization target σU , for which we inserted Eq. (9) from the
main text (Fig. S3a-d).

We can conclude that random sampling of the weights induces systematic variance in the
expected membrane potential means µ̂U of neurons receiving inputs from n homogeneous Pois-
son processes with firing rate ν. Specifically, the expected variance on the population level is
independent of the number of inputs n, but scales with the target fluctuation magnitude σU
and the input firing rate ν.

Sampling distribution of σ̂U . We follow a similar approach to derive the sampling distribu-
tion of fluctuation magnitudes in the population. Formally, we are looking for the distribution
of σ̂2

U , which can be derived from observing that for a neuron i(
σ̂

(i)
U

)2
= n

((
σ̂

(i)
W

)2
+
(
µ̂

(i)
W

)2
)
νε̂ . (76)

To get the distribution of σ̂U , we first need to determine the distribution of the right hand side.
Starting with the distribution of µ̂2

W , we observe that the standardized form of µ̂2
W follows a

chi-square distribution with one degree of freedom:

µ̂2
W
σ2
W
n

∼ χ2
1 . (77)

Similarly to the first paragraph, we can rewrite the chi-square distribution as a Gamma distri-
bution and use its scaling properties to obtain the distribution of µ̂2

W :

µ̂2
W ∼ Γ

(
1

2
,
2σ2

W

n

)
. (78)

Note that both µ̂2
W and σ̂2

W are Gamma distributed with a shared scale parameter θ =
2σ2
W
n and

that these random variable are independent. We can therefore use the summation property of
the Gamma distribution to obtain(

σ̂2
W + µ̂2

W

)
∼ Γ

(
n

2
,
2σ2

W

n

)
(79)

and finally plug this result back into Eq. (76) to obtain the distribution

σ̂2
U ∼ Γ

(n
2
, 2νε̂σ2

W

)
. (80)

As we did in the previous paragraph, we can insert the solution for σ2
W in the case of centered

weights, given by Eq. (9), to simplify the distribution to

σ̂2
U ∼ Γ

(
n

2
,
2σ2

U

n

)
(81)

as displayed in Fig. S3f. We can alternatively express the expected variability as the distribution
of standard deviations, which follows the Nakagami distribution [3]

σ̂U ∼ Nakagami
(n

2
, σ2

U

)
(82)

with shape parameter m = n
2 and spread parameter Ω = σ2

U (Fig. S3f). Thus, random sampling
of synaptic weights induces a systematic variance in σU that scales with σ2

U and inversely with
the number of inputs.

48

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

S3 Fluctuation-driven initialization of Dalian networks using log-normally
distributed weights

The initialization of the weights in separate excitatory and inhibitory neuronal populations, as is
the case with Dalian networks, requires weights sampled from one-sided distributions. Inspired
by neurobiological evidence [4], we consider weights sampled from the log-normal distribution
parameterized by µ and σ > 0 that gives rise to a random variableX = eµ+σZ where Z ∼ N(0, 1)
is a standard normal random variable. The expected value and the variance ofX are then defined
as

E[X] = exp

(
µ+

σ2

2

)
(83)

V[X] =
(
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
. (84)

To parameterize synaptic weights, we use the log-normal distribution to obtain excitatory
weights ln(WE) ∼ N (µE , σE) and inhibitory weights ln(W I) ∼ N (µI , σI). As we only have
two equations, which we use to describe the membrane potential of a neuron in the fluctuation-
driven regime (mean and variance of the membrane potential), we also need to restrict the
parameterization to two parameters in total. Hence, we set σE = σI = 1. We can therefore
simplify the above to

E[W] = eµ+1/2 (85)

V[W] = e2µ+2 − e2µ+1 (86)

and also note that the second moment of the distribution is

E[W 2] = e2µ+2 . (87)

Given these definitions, we can write down the values of µU and σ2
U as

µU = NEνE ε̄Ee
(µE+1/2) −NIνI ε̄Ie

(µI+1/2) (88)

σ2
U = NEνE ε̂Ee

(2µE+2) +NIνI ε̂Ie
(2µI+2) . (89)

We once more set a target mean membrane potential µU = 0 to achieve a balanced state at
initialization. Using this, we solve Eq. (88) to receive an expression for µI

µI = µE + log

(
NEνE ε̄E
NIνI ε̄I

)
, (90)

which can be further simplified to

µI = µE + log

(
1

∆EI

)
(91)

by using the definition of ∆EI from Eq. (45). Substituting this result into Eq. (89) allows us to
solve for µE and we receive

µE =
1

2
log

 σ2
U

NEνE ε̂E +NIνI ε̂I

(
1

∆EI

)2

− 1 . (92)

Finally, Equations (91) and (92) together with σE = σI = 1 and µU = 0 provide us
the parameters to initialize the inhibitory and excitatory weights sampled from a log normal
distribution.

49

https://dx.doi.org/10.1088/2634-4386/ac97bb

Published as: Rossbroich, Gygax, and Zenke (2022). Neuromorph Comput Eng 10.1088/2634-4386/ac97bb

Dalian networks with excitatory recurrence. We start from the mean and variance of
the membrane potential for a neuron receiving a feed-forward excitatory, recurrent excitatory
and recurrent inhibitory input, where we assume νR = νF = νI = ν,

µU = (NF νε̄E) eµF+1/2 + (NRνε̄E) eµR+1/2 − (NIνε̄I) e
µI+1/2 (93)

σ2
U = (NF νε̂E) e2µF+2 + (NRνε̂E) e2µR+2 + (NIνε̂I) e

2µI+2 (94)

and the definition of α

α =
Part of σ2

U caused by excitatory feed-forward connections

Part of σ2
U caused by all excitatory connections

(95)

=
(NF νε̂E) e2µF+2

(NF νε̂E) e2µF+2 + (NRνε̂E) e2µR+2
. (96)

Here we are again requiring a mean membrane potential µU = 0 and we set the variances of the
log-normal distributions to one, σR = σF = σI = 1.
Performing the same sequence of solving and substituting as in the above paragraph, we find
explicit equations for the three weight distribution parameters:

µR = µF +
1

2
log (NF − αNF)− log (αNR) = µF + ∆R (97)

µI = µF +
1

2
log

(
ε̄E
(
e∆RNR +NF

)
NI ε̄I

)
= µF + ∆R

EI (98)

µF =
1

2
log

 σ2
U

ν
(
e2∆RNRε̂E + e2∆R

EI ε̂INI +NF ε̂E

)
− 1 . (99)

References

[1] Gerstner, W. and Kistler, W. M. Spiking Neuron Models. Cambridge University Press,
2002.

[2] “The distribution of quadratic forms in a normal system, with applications to the analysis
of covariance”. In: Mathematical Proceedings of the Cambridge Philosophical Society 30.2
(1934), pp. 178–191.

[3] Huang, L.-F. “The Nakagami and its related distributions”. In: WSEAS Transactions on
Mathematics 15 (2016), pp. 477–485.

[4] Buzsáki, G. and Mizuseki, K. “The log-dynamic brain: how skewed distributions affect
network operations”. In: Nature Reviews Neuroscience 15 (2014), pp. 264–278.

50

https://dx.doi.org/10.1088/2634-4386/ac97bb

	PSP kernel parameters
	Population-level variability in membrane potential fluctuations
	Fluctuation-driven initialization of Dalian networks using log-normally distributed weights

