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We navigate the world guided by the invisible. As we search the web, Google learns from
our behaviours and predicts what we are looking for even before we completely type it. We
can even forgo typing and gently whisper our wishes to our smartphones. An amiable
virtual assistant accompanies us on our commute and helps us plan our day. At home,
smart systems fine-tune lights, music volume, and heating to match our moods across the
day and seasons. Artificial intelligence (AI) empowers these smart systems to find patterns
within the expanses of our behavioural data to predict and adapt to our ever-changing
desires. Even our robot vacuum cleaner constitutes a form of embodied albeit different
artificial intelligence, precisely navigating around furniture to grab dirt. At the same time,
we converse with algorithms that know how to entertain us. AI is employed even in the
bureaucratic humdrum: facial-recognition systems at airports compare our faces to the
biometric image stored on our passports and wave us through or redirect us to a human
customs officer if further inquiry is needed. Smart technologies rely on our interactions to
become  “smarter,”  and  our  increasing  engagement  with  and  dependence  on  these
technologies signal two inevitabilities. On the one hand, the emergence of more mature
and competent AI. And on the other hand, an ever-growing presence of these technologies
in virtually all aspects of our daily lives. Yet most users of these smart technologies seldom
pay much attention to what AI is, how it works, and its similarities to or differences from
human intelligence.

Let  us  first  define  what  intelligence  is.  Intelligence  combines  perceiving  and  retaining
information with the ability to apply it in different contexts. For instance, most of us get our
food at the local store. Still, when shopping for cheese in a new city, we expect to find it
within the dairy section and not in the laundry-detergent section. This expectation arises
because we have learned that cheese is milk-based and usually needs to be refrigerated
and  is  thus  typically  in  the  corner  of  the  shop with  the  coolers.  Acquiring  knowledge
through experience allows us to find our bearings in new situations quickly.

This  ability  is  what  computer  scientists  call  generalization.  Humans  and  some animal
species  such as  monkeys  or  crows  are  very  good  at  it  and are  remarkably  adept  at
applying  prior  knowledge to  new situations.  AI  comprises  artificial  systems capable  of
solving tasks that previously required the biological intelligence exhibited by humans and
animals.  Though  several  different  definitions  for  AI  exist,  most  of  them centre  on  the
notions of  problem-solving through reasoning and of  planning by considering previous
knowledge and adapting it  from one scenario to a new, unfamiliar setting (Russell  and
Norvig 2020). In other words, one can think of intelligence as a meta-skill that allows one
to solve novel problems, acquire new skills, and learn.

Researchers further distinguish between narrow and general AI. Most current AI systems
fall into the former category. For instance, a self-driving car can keep within its lane while
on a highway, and a robot vacuum cleaner will move around objects in your home while
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cleaning. Yet neither would apply their driving skill to the other domain nor learn to play
chess. Humans, on the other hand, are capable of mastering diverse tasks. The machine
equivalent of such intelligence would be what we call artificial general intelligence (AGI).
Although AGI is the object of intense research efforts backed by major industries, we are
presumably still  far  from developing true AGI.  In the following,  we focus on narrow-AI
systems whose possibilities are limited  to one or several specific tasks, such as speech
recognition and computer vision. Their capabilities are still  impressive, and researchers
have made great strides in developing them further.

Recent advances and current possibilities of AI

The  first  Grand  Challenge  for  autonomous  vehicles,  a  142-mile  course  through  the
Californian desert, was organized by the Defence Advanced Research Projects Agency
(DARPA) in 2004. No vehicle completed the course (DARPA, 2004). However, only a few
years later, in 2009, a self-driving vehicle from Google had completed over ten drives that
were longer than one hundred miles each. Self-driving cars use advanced vision sensors,
radar, and lidar to constantly map their surroundings while in motion. Machine-learning
algorithms process these data streams and infer the position of the vehicle with respect to
the  lane  on  the  road,  other  vehicles,  and  any  unforeseen  obstacles.  Based  on  this
information, they control actuators to keep the car in lane and to avoid collisions. When the
algorithms encounter a situation they cannot handle, they usually pass control back to the
human driver or initiate an emergency stop of the vehicle.

Driving  and  many  tasks  we  perform  as  humans  rely  on  vision  and,  consequently,
improving computer vision algorithms is an intense focus area in AI research. The annual
ImageNet  Large Scale  Visual  Recognition  Challenges (Russakovsky et al.  2015)  have
showcased just  how far this  field  has progressed.  At the competition,  computer vision
algorithms have to categorize an object or animal depicted in a photograph. While the
categories are known in advance, the competing algorithms have never before seen the
images that  they  have to  classify.  For  instance,  the  algorithms would  have  to  “know”
whether a picture they have never seen before shows a chair, a container ship, or a cow.
In  2012,  AlexNet,  a  convolutional  neural  network  (Krizhevsky  et al.  2012),  with  an
architecture inspired by the primate visual system, won the ImageNet competition by a
large  margin.  AlexNet’s  success  largely  relied  on  a  novel,  “deep”  neural-network
architecture, and their win heralded the age of deep neural networks, which have since
transformed most  modern AI  approaches. We will  learn more about what  deep neural
networks are in the next section but, for now, let us focus on what they can do.

DeepMind,  a  deep  learning  start-up  that  has  since  become  a  subsidiary  of  Google,
developed an AI software  called AlphaGo that plays the game of Go. In 2016, AlphaGo,
primarily  built  on progress in deep-neural-network technology,  won in the game of Go
against a human grandmaster (Silver et al. 2016). It was an extraordinary feat. In chess, a
computer had beaten the champion, Garry Kasparov, twenty years earlier,  in 1997, by
simply using brute force to simulate a myriad of possible games to assess its next move.
This strategy is not viable in Go because there are too many possible games, and using it
would lead to a combinatorial explosion. There are too many games for even the most
powerful supercomputers to simulate. Modern AI systems have parted with purely brute-
force strategies and instead take inspiration from the brain, which uses neural networks
trained  through  experience  to  detect  and  evaluate  patterns.  This  knowledge  enables
neural  networks  to,  for  instance,  judge  one  chess  position  resulting  from a  move  as
“looking”  more  advantageous  than  another,  without  necessarily  having  to  play  out  all
possible future games that could ensue. And, presumably, this strategy is more like the
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intuitions that grandmasters like Kasparov, through extensive training, have learned to use
to excel at their trade.

The breakthroughs with deep neural networks keep coming. In 2020, OpenAI released
GPT-3, an AI system with the ability to write and talk almost like a human about virtually
any topic  you could  think  of.  But  AI  has not  been limited  to  self-driving  cars,  playing
games, and robotic banter. In 2020 as well, DeepMind released AlphaFold-2, an AI system
(Jumper et al. 2021) that constitutes a chemistry Nobel Prize–worthy advance in protein-
structure prediction and which has the potential to fundamentally change pharmaceutical
research. Simultaneously, there has been tremendous progress for AI in health-care and
nursing  applications.  For  instance,  AI  is  helping  to  identify,  classify,  and  quantify
pathologies in medical images (Shen et al. 2017). Similarly, in elderly care, AI is heralding
a  new  age  by  providing  smart  systems  that  monitor  human  movements  through
unobtrusive computer vision systems and alert caregivers in the event of falls or when they
detect  behaviour  that  is  out  of  the  ordinary  (Corbyn,  2021).  AI  is  also  advancing  the
capabilities  of  neuroprosthetics,  thereby  allowing  paralyzed  persons  with  anarthria  to
speak (Moses et al. 2021). To that end, an implanted electrode array picks up the person’s
brain  signals  from  the  speech  sensorimotor  cortex.  These  signals  are  subsequently
processed  by  a  neural  processing  system  that  infers  the  probabilities  of  the  person
thinking  of  specific  words  that  they  want  to  communicate.  Finally,  the  predicted  word
probabilities are fed into a language model similar to GPT-3, and the outputs are decoded
as sentences displayed on a screen or enunciated through an artificial speech-generation
system. So how do modern AI systems achieve this level of accomplishment?

The technical and conceptual progress that has enabled modern AI technologies

When George Boole 1854) published his Investigation of the Laws of Thought some 150
years  ago,  he  believed  that  one  day  we  would  understand  the  mind  and,  ultimately,
intelligence through logic and mathematical equations that can be written down succinctly.
Boole’s influential work heralded the information age, laid the theoretical foundations of
modern computers, and has defined in large part how people are trying to build AI. It was
only around the turn of the new millennium when AI researchers gradually realized that the
rules of intelligence seem too complex to be written down by hand.

This  realization  formed the  foundations  of  machine  learning,  which  is  concerned  with
“learning”  the  rules  and  identifying  the  relevant  patterns  from the  data.  Deep  artificial
neural networks (ANNs), which constitute one specific branch of machine learning, proved
particularly suitable for this purpose (Krizhevsky et al. 2012; Rumelhart et al. 1986; LeCun
et al. 2015; Schmidhuber 2015; Goodfellow et al. 2017). Their design was inspired by that
of the brain in which large numbers of identical neurons connect to vast networks whose
computational abilities are primarily determined by how they are connected. The central
technological  advance  that  made  deep  learning  possible  was  that  researchers  have
worked out effective algorithms that can  learn from large amounts of training data and
automatically adjust the myriad of synaptic connections, thereby creating ANNs that can
complete a particular task such as recognizing what is in an image (Figure 1.1).



Figure 1.1: Classic and Current Approaches to Identifying an Image

Architecturally, ANNs need to be deep, which means that information travels through many
layers before an output is generated. Moreover, depending on the task at hand, neurons
need to  be pre-wired in specific  ways.  For  instance,  in  convolutional  neural  networks,
which are essential for computer vision, each neuron in the input layers receives input
from only a small part of the image. Then, neurons in subsequent layers receive input from
neighbouring  neurons  in  the  previous  layer,  thereby  gradually  pooling  over  local
information in the input image as the data flow through the ever-deeper layers. To train
these deep networks, computer scientists had to advance their theoretical understanding
of network dynamics to allow for effective weight-initialization strategies and develop new
training  algorithms  to  update  the  many  connection  weights  more  efficiently.  Another
advance was the emergence of powerful computational capabilities, which arrived in the
form of graphic processing units (GPUs), initially developed for the gaming industry. Unlike
the highly specialized central  processing units (CPUs) at  the heart  of  every computer,
GPUs perform simpler operations but allow for massive parallelism. This parallelism allows
the application of the same algorithmic functions to different data in parallel, which proved
ideal for speeding the vast neural-network simulations used in AI, which require that many
identical  neurons receive distinct  inputs.  Thus, GPUs have increased sheer computing
power.  There  now  exist  diverse  specialized  hardware  tailored  for  deeplearning
applications. Finally, and perhaps most importantly, training deep neural networks requires
large amounts  of  data  from which  synaptic  connections are  “learned.”  The underlying
optimization algorithms are said to operate end to end in that they directly distill knowledge
from vast amounts of data into the connections between the deep network layers. That is
ultimately the reason why we speak of “deep” learning.



While its reliance on learning from data is deep learning’s strength, it is also one of its
potential weaknesses because nothing prevents implicit or explicit biases present in the
data from being directly absorbed by the AI that relies on it, thus, AI systems can develop
racial, gender, age, and more complex biases (Buolamwini and Gebru 2018; Bender et al.
2021). While these biases may be hard to detect, they really impact people’s lives. Today,
AI systems are involved in hiring decisions, facial recognition at airports, and detection of
credit-card fraud, to name only a few examples. As AI’s influence on our everyday lives
grows, so does the adverse effect of any biases in the datasets used for training them.
Therefore, avoiding unwanted biases is essential for any current or future AI system.

Major hurdles on the way to ubiquitous AI

As AIs mature and become more intelligent, the potential applications of smart devices in
all  walks  of  life  seem  to  be  growing  exponentially.  At  the  same  time,  the  extensive
computational  resources  required  by  modern  AI  systems  are  increasing  (Lasse  et al.
2020), thereby creating a significant impediment to widespread deployment of intelligent
devices in,  for  instance,  mobile  and smart-home applications.  One major  issue is  the
energy  cost  of  running  continuous  inference  on  frame-based  video  or  audio  streams.
Consequently, when you verbally ask your digital personal assistant  or you speak instead
of typing into your smartphone, the speech audio is not processed on your phone  but is
instead sent to a cloud server for automatic speech recognition. This transfer reduces the
computational burden on your phone, thereby allowing it to operate with fewer hardware
requirements and extending its battery life. However, this reliance on a cloud server for
processing creates several issues. First, it requires a permanent internet connection. Thus,
when driving through an area with a poor mobile connection, the service might not be
available. Second, it means that your data are sent to the cloud, with the obvious privacy
implications. Thirdly, the transfer introduces a communication delay. This delay may not be
an issue when you tell your smart-home speaker to dim the lights. Still, when considering
time-critical applications such as  driving decisions in an autonomous vehicle, you would
want to avoid any delay.

Curiously,  a  standard  GPU  used  for  deep  learning  applications  consumes  several
hundreds  of  watts  while  the  human  brain,  which  avoids  all  the  above  issues,  runs
flawlessly  on a comparatively  limited power budget  of  approximately twenty-five watts.
This discrepancy has inspired decades of research in neuromorphic engineering (Mead
1990; Mead and Ismail 2012; Indiveri et al. 2011; Schuman et al. 2017; Boahen 2017).
Schuman et al. (2017) tried to achieve similar efficiency, taking inspiration from the brain
by copying its essential architectural features, some of which differ fundamentally from the
neural   network architectures used in modern AI systems.

Brain-inspired neuromorphic technologies for pervasive AI

While deep learning leverages ANNs, which are intrinsically biological in inspiration, such
artificial networks are simulated on processors and GPUs that serve as the computational
substrate and have a circuit architecture that is fundamentally different from that of the
brain. In broad strokes, neuromorphic engineering has taken on the challenge of building
computational substrates in electronics that emulate neural network computation instead
of simulating it. Intense research efforts in this direction have resulted in an increasing
number of neuromorphic substrates being available today (Indiveri  et  al.  2011; Merolla
et al. 2014; Davies et al. 2018; Grübl et al. 2020) that allow for an efficient emulation of
brain-inspired  neural  networks.  There  are  two  major  design  characteristics  that  many
neuromorphic substrates try to copy from neurobiology.



The first is that the brain uses in-memory computation, whereby synapses are the physical
location  of  long-term information  storage  and  also  of  the  elements  that  carry  out  the
computation during inference, that is, where the network processes information. This co-
location  of  memory  and  computation  is  fundamentally  different  from  conventional
computers, which generally adhere to von Neumann architecture, in which memory and
CPU are separated. In practice, this separation creates a computational bottleneck for
neural  networks  since  it  requires  a  constant  back-and-forth  of  synaptic-weight  values
between CPU and memory, thereby resulting in excessive power consumption. Significant
research  efforts,  therefore,  are  focusing  on  building  in-memory,  compute-enabled
substrates based on novel device technologies such as memristors (Chua 1971; Strukov
et al. 2008; Marković et al. 2020; Joshi et al. 2020; Yao et al. 2020), resistors that change
their resistance in an activity-dependent manner.

The second characteristic of many neuromorphic substrates is spiking neurons that closely
mimic the signalling properties of biological neurons in the brain. Conventional ANNs used
in deep learning rely on analogue neuronal activation functions, which allows neuronal
output  to  take  on  a  real-valued  quantity.  Biological  neurons,  however,  communicate
through action potentials or spikes, which are all-or-nothing events localized in time. In
other words, when a spiking neuron does not “fire,” no information is communicated. This
contrasts with conventional ANN implementations in which even an output value of zero is
communicated.  From a  power-efficiency  perspective,  the  advantage  of  spiking  seems
obvious:  neurons  only  communicate  with  other  neurons  when  they  have  something
important  to  say.  Neurobiology  appears  to  make  extensive  use  of  this  power-saving
mechanism in that spiking activity in many brain areas is exceptionally sparse, a property
commonly ascribed to the superior power efficiency of the brain (Sterling and Laughlin
2015;  Davidson  and  Furber  2021).  Based  on  this  idea,  researchers  have  developed
neuromorphic digital vision sensors, the brain-inspired equivalent of pixel-based cameras,
that only generate spikes when changes in a visual scene are detected (Lichtsteiner et al.
2008). For instance, a pixel-based surveillance camera generates a constant data rate of
twenty-five frames per second, requiring downstream processing that consumes energy. In
contrast, a neuromorphic vision sensor only transmits spikes when the scene changes (for
instance, when somebody moves in the sensor’s field of view), thereby curbing the data
rate,  which  provides tremendous potential  for  power  savings,  provided that  a  suitable
event-based processing system is used.

While power-efficient neuromorphic substrates could provide such processing, given that
they had been available for some time, one major challenge remained. Like an ANN, the
spiking neural  network (SNN) that  operates a spiking neuromorphic substrate requires
training. However, practical training algorithms that can simultaneously deal with spiking
and  run  on  neuromorphic  hardware  were  lacking  until  recently,  thereby  creating  a
performance gap between deep neural networks and SNNs. Luckily, recent advances in
training algorithms for SNNs seem capable of closing this gap, thereby paving the way for
training power-efficient deep spiking-network models on neuromorphic hardware (Pfeiffer
& Pfeil 2018; Shrestha and Orchard 2018; Wu et al. 2018; Neftci et al. 2019; Bellec et al.
2020; Kaiser et al. 2020; Bohnstingl et al. 2020; Büchel et al. 2021).

These advances open the door for a diversity of exciting applications. First, the potential of
emulating SNNs on ultra-low-power neuromorphic hardware (Blouw et al. 2019; Bojian et
al.  2021;  Cramer  et  al.  2022)  makes  them  ideally  suited  for  mobile  and  always-on
applications, for  instance,  home-surveillance tasks or  situations that  require a portable
device running on a battery. Moreover, their ability to process sparse sensory data with low



latency (meaning that the processing does not induce long delays) suggests potential roles
for  spiking  neuromorphic  hardware  in  automotive  applications.  Further,  integrating
neuromorphic SNN chips into smart devices will remove the need for communicating with
cloud-based servers and any potential associated implications for privacy. Finally, spiking
neuromorphic hardware holds the promise of building smart neuroprosthetics that interface
directly with biological neural tissue.

What do these advances bring to the future of smart-home technologies? For example, in
the  context  of  elderly  care,  SNN  chips  will  enable  always-on  speech  recognition  on
battery-powered devices that allow users with reduced vision or mobility to communicate
with intelligent devices directly using speech. Simultaneously, the power efficiency of SNN-
based solutions holds the promise of vastly expanding battery life, a safety-critical feature,
especially for forgetful users.

Similarly, event-based vision sensors deployed around the home will conceivably monitor
the inhabitants’ every step, detecting a fall or other medical emergency immediately while
being able to communicate and call  for help if  the person is not responsive. Crucially,
during normal operation, on-chip processing in the vision sensors themselves, combined
with  ultra-low-power edge processing,  will  ensure that  no private data are sent  to  the
cloud.  All  data  remain  on  site  with  the  user,  and  external  communications  are  only
established when there is a genuine problem requiring intervention.

Conclusion

In  summary,  conceptual  advances  in  deep  learning  combined  with  unprecedented
amounts of data and computational power have propelled AI to an unparalleled level of
ability,  thereby  opening  the  door  to  smart  devices.  At  the  same  time,  novel  training
techniques for SNNs are allowing the unlocking of the unprecedented energy efficiency of
neuromorphic  hardware  technologies.  Together,  these  technical  advances  will  make  it
possible for AI to accompany us in our everyday lives, which holds incredible opportunities.
Nonetheless, important concerns regarding privacy and the ethics of their use remain.
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Glossary of Technical Terms

Deep  learning,  a  subdiscipline  of  machine  learning  that  uses  deep  artificial-neural-
network  models  with  many  layers,  essentially  underlies  the  success  of  artificial
intelligence. The term “learning” implies that the connections in deep neural networks are
fine-tuned algorithmically using large datasets of labelled examples, for instance, images
with known content. One speaks of “training” a deep neural network.

Convolutional neural networks are a specific type of deep neural network with a local
connectivity  structure  that  is  commonly  used  in  computer  vision  to  identify  objects.
Convolutional  neural  networks are inspired by the visual  system in  humans and other
primates, whereby neurons in lower layers only see a small part of an image. Subsequent
layers pool information from increasing fractions of the picture. This biologically inspired
connectivity  structure  is  vital  for  the  ability  of  such  networks  to  generalize  to  unseen
images.

Von  Neumann  architecture: This  classic  computer  architecture  posits  a  physical
separation between a central processing unit and memory. It underlies virtually all modern
computers  but  is  notably  different  from biological  neural  networks  in  the  brain,  where
computing elements (neurons) and memory (synapses) are co-located in the brain tissue.

Neuromorphic  computing  substrate: Neuromorphic  substrates  are  computing
architectures inspired by biological neural networks. Neuromorphic substrates typically aim
to co-locate computational elements and memory to avoid bottlenecks resulting from their
separation,  as with the von Neumann architecture. The primary motivation for this co-
location is to produce more power-efficient and fault-tolerant computing systems that are
more like biological brains.

Edge  computing: Edge  computing  is  a  distributed-computing  paradigm  that  brings
computation closer to the sensors that produce the data. For instance, it can be performed
by a small server at home, which contrasts with cloud computing, in which computation
occurs on servers in the cloud that may be physically far away. Edge computing decreases
response times, saves communication bandwidth, and improves privacy.

Action potential or spikes: Biological neurons communicate with short electrical pulses
called action potentials or spikes. This procedure contrasts with the neuronal-activation
function  used  by  conventional  deep  neural  networks,  which  transmit  analogue-valued
outputs.  Spiking communication presumably plays a significant  role in the unparalleled
power efficiency of biological brains as compared to the deep neural networks used in
machine learning.
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