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Abstract

Hebbian plasticity, a synaptic mechanism which detects and amplifies co-activity between neurons, is
considered a key ingredient underlying learning and memory in the brain. However, Hebbian plasticity
alone is unstable, leading to runaway neuronal activity, and therefore requires stabilization by additional
compensatory processes. Traditionally, a diversity of homeostatic plasticity phenomena found in neural
circuits are thought to play this role. However, recent modelling work suggests that the slow evolution of
homeostatic plasticity, as observed in experiments, is insufficient to prevent instabilities originating from
Hebbian plasticity. To remedy this situation, we suggest that homeostatic plasticity is complemented by
additional rapid compensatory processes, which rapidly stabilize neuronal activity on short timescales.
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Introduction

More than half a century ago, Donald Hebb [1]
laid down an enticing framework for the neurobi-
ological basis of learning, which can be succinctly
summarized in the well-known mantra, “neurons
that fire together wire together” [2]. However,
such dynamics suffers from two inherent prob-
lems. First, Hebbian learning exhibits a positive
feedback instability: those neurons that wire to-
gether will fire together more, leading to even
stronger connectivity. Second, such dynamics
alone would lead to all neurons in a recurrent cir-
cuit wiring together, precluding the possibility of
rich patterns of variation in synaptic strength that
can encode, through learning, the rich structure
of experience. Two fundamental ingredients re-
quired to solve these problems are stabilization
[3], which prevents runaway neural activity, and
competition [4–6], in which the strengthening of
a synapse may come at the expense of the weak-
ening of others.

In theoretical models, competition and stability
are often achieved by augmenting Hebbian plas-
ticity with additional constraints [3, 5, 7]. Such
constraints are typically implemented by impos-
ing upper limits on individual synaptic strengths,
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and by enforcing some constraint on biophysical
variables, for example, the total synaptic strength
or average neuronal activity [6–12]. In neurobi-
ology, forms of plasticity exist which seemingly
enforce such limits or constraints through synap-
tic scaling in response to firing rate perturba-
tions [13, 14], or through stabilizing adjustments
of the properties of plasticity in response to the
recent synaptic history, a phenomenon known as
homeostatic metaplasticity [6, 11, 15, 16]. Over-
all, synaptic scaling and metaplasticity, as spe-
cial cases of homeostatic mechanisms that oper-
ate over diverse spatiotemporal scales across neu-
robiology [17–22], are considered key ingredients
that contribute both stability and competition to
Hebbian plasticity by directly affecting the fate of
synaptic strength.

The defining characteristic of homeostatic plas-
ticity is that it drives synaptic strengths so as
to ensure a homeostatic set point [23, 24], such
as a specific neuronal firing rate or membrane
potential. However, it is important that this
constraint is implemented only on average, over
long timescales, thereby allowing neuronal activ-
ity to fluctuate on shorter timescales, so that these
neuronal activity fluctuations, which drive learn-
ing through Hebbian plasticity, can indeed re-
flect the structure of ongoing experience. This
requisite separation of timescales is indeed ob-
served experimentally; forms of Hebbian plastic-
ity can be induced on the timescale of seconds
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Figure 1: Comparison of the typical timescale of different forms of homeostatic plasticity in models and in
experiments. (a) Weight normalization in models. Here we plot the characteristic timescale on which synaptic weights
are either normalized or scaled. (b) Synaptic scaling in experiments. Here we plot the typical time at which synaptic
scaling is observed. (c) Models of metaplasticity. We plot the characteristic timescale on which the learning rule changes.
(d) Metaplasticity in experiments. Here we show the typical timescale at which metaplasticity is observed.

to minutes [25–28], whilst most forms of home-
ostatic synaptic plasticity operate over hours or
days [14, 24, 29]. This separation of timescales,
however, raises a temporal paradox: homeostatic
plasticity then may become too slow to stabilize
the fast positive feedback instability of Hebbian
learning. Indeed modeling studies that have at-
tempted to use homeostatic plasticity mechanisms
to stabilize Hebbian learning [11, 30–34] were typ-
ically required to speed up homeostatic plasticity
to timescales that are orders of magnitude faster
than those observed in experiments (Fig. 1).

This temporal paradox could have two poten-
tial resolutions. First, the timescale of Hebbian
plasticity, as captured by recent plasticity models
fit directly to data from slice experiments [28, 35–
38], may overestimate the rate of plasticity that
actually occurs in-vivo. This overestimate could
arise from differences in slice and in-vivo preps,
or because complex nonlinear synaptic dynam-
ics, both present in biological synapses and use-
ful in learning and memory [39–41], are missing
in most, but not all [42–44], data-driven models.
While slow plasticity may be a realistic possibil-
ity in cortical areas exhibiting plastic changes over
days [45, 46], it may not be a realistic resolution
in other areas, like the hippocampus, which must
rapidly encode new episodic information [47, 48].
The second potential resolution to the paradoxi-
cal separation of timescales between Hebbian and
homeostatic plasticity may be the existence of
as yet unidentified rapid compensatory processes
(RCPs) that stabilize Hebbian learning. Below,

we explore both the theoretical utility and poten-
tial neurobiological instantiations of these puta-
tive RCPs.

The temporal paradox of Hebbian and
homeostatic plasticity

To understand the theoretical necessity for
RCPs to stabilize Hebbian plasticity, it is use-
ful to view a diversity of synaptic learning mod-
els through the unifying lens of control theory
(Fig. 2a). Here we can view the “fire together,
wire together” interplay of neuronal activity and
Hebbian synaptic plasticity as an unstable dy-
namical system. Also, we can view a compen-
satory process as a feedback controller that ob-
serves some aspect of either neuronal activity or
synaptic strength, and uses this observation to
compute a feedback control signal which then di-
rectly affects synaptic strength so as to stabilize
global circuit activity. Indeed homeostatic plas-
ticity is often thought of as a negative feedback
control process [23, 24, 64, 65]. In general, the
delay in any feedback control loop must be fast
relative to the time-scale over which the unsta-
ble system exhibits run-away activity [66]. If the
loop is slightly slow, the run-away will start before
the stabilizing feedback arrives, generating oscil-
lations within the system. In some cases, if the
loop is even slower, the unstable runaway process
might escape before stabilization is even possible
(Fig. 2b).
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Figure 2: A control theoretic view of homeostatic plasticity and Hebbian learning. (a) The coupled dynamics
of Hebbian plasticity and neural activity constitutes an unstable dynamical system. Homeostatic plasticity, and more
generally any compensatory mechanism, can be viewed as a controller that observes aspects of neuronal activity and
synaptic strengths, and uses these observations to compute a feedback control signal that acts on synaptic dynamics so as
to stabilize circuit properties. (b) The cart pole problem is a simple example of stabilizing a non-linear dynamical system
with feedback. The task of the controller is to exert horizontal forces on the cart to maintain the rod (m = 1kg) in an
upright position. For simplicity we assume a weightless cart with no spatial constraints on the length of the track. The
controller has access to an exponential average (time constant τ) over recent observations of both the angle θ and angular
velocity θ̇ of the pole. For small values of τ the controller can successfully maintain the rod upright (θ ≈ 0; top panel).
However, as τ and the associated time lag in the observed quantities gets larger, oscillations arise (middle panel) and
eventually the system becomes unstable (bottom panel).

Such oscillations and run-away are demon-
strated in Fig. 3 for several compensatory mecha-
nisms with feedback timescales that are chosen to
be too slow, including the Bienenstock-Cooper-
Munro (BCM) rule [6, 67], and triplet spike-
timing-dependent plasticity (STDP) [36] with ei-
ther synaptic scaling [13, 53] or a metaplastic slid-
ing threshold, as stabilizing controllers. For ex-
ample, the BCM rule (Fig. 3a) can be thought
of as a feedback control system where the con-
troller observes a recent average of the postsy-
naptic output firing rate of a neuron, and uses
this information to control both the sign and am-
plitude of associative plasticity; if the recent av-
erage is high (low), plasticity is modulated to be
anti-Hebbian (Hebbian). However, to achieve sta-
bility, the BCM controller must average recent
output-activity over a short enough time-scale to
modulate plasticity before this activity itself runs
away (Fig. 3a; [11, 31, 32]). This result is not lim-
ited to BCM like rate models, but applies equally
to STDP models which rely on similar metaplas-
ticity processes to ensure stability ( Fig. 3bc;
[31, 36, 37, 52]). These modified STDP rules can
be thought of as employing feedback controllers
which also observe a recent average of output fir-
ing rate, but use this information to modulate the
STDP window, thereby stabilizing the system by
changing relative rates of long-term potentiation
(LTP) and long-term depression (LTD).

Another class of models relies on renormaliza-
tion of afferent synaptic weights to stabilize Heb-

bian plasticity. We distinguish between models
with instantaneous algorithmic re-normalization
of the weights [4, 5, 7, 50] and models which pro-
portionally scale synaptic weights in an activity
dependent way [8, 31, 68]. In the former case
the controller observes total synaptic strength and
uses this information to adjust synapses to keep
this total strength constant. In the latter case,
the controller observes neuronal firing rate, or re-
cent average thereof, and uses this information to
proportionally adjust afferent synaptic weights to
enforce either a specified target output, or a total
synaptic strength. Just as in the case of metaplas-
ticity discussed above, the temporal average of the
activity sensor has to be computed over a short
timescale, related to the timescale over synaptic
strengths and neuronal activity change, to ensure
stability (Fig. 3d [31–33]). Moreover, the rate at
which the synaptic scaling process itself causes
synaptic strengths to scale must be finely tuned
to a narrow parameter regime that is neither too
fast nor too slow [31–33, 53]; if too slow, then
stabilization is not possible, while if too fast, the
stabilization process overshoots, causing oscilla-
tions.

Finally, some STDP models can be intrinsically
stable, especially in feedforward circuits. One ex-
ample are pair-based STDP models in which the
integral of the STDP window is slightly biased to-
ward depression. When weights are additionally
limited by hard bounds, this can lead to bimodal
weight distributions and firing rate stabilization
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Figure 3: Instability in different plasticity mod-
els. (a) Unstable oscillations in the BCM model for
a simple feed-forward circuit [6, 11]. Model: τw

dw
dt

=

ανinνout(νout−βν̄2out), τc
d
dt
ν̄out = νout− ν̄out with νout =

wνin, τw = 0.9τc, νin ≡ 1 in arbitrary units (a.u.) and α
and β are dimensionful scalar constants that ensure correct
units; we take simply α = β = 1. Here ν̄out can be thought
of as the observation of a controller, corresponding to an
average of output neuronal activity νout over time-scale
τc. Moreover, the multiplicative term in parenthesis in
the weight dynamics can be interpreted as a control signal
that modulates both the sign and amplitude of associative
plasticity, dictating a stabilizing anti-Hebbian rule if the
recent average ν̄out is too large. If the control dynamics
τc is too slow relative to the synaptic plasticity dynamics
τw, unstable oscillations arise. (b–d) Runaway activity in
a recurrent neural network simulation consisting of 25000
excitatory and inhibitory integrate-and-fire neurons and
plastic excitatory synapses using a minimal triplet STDP
model [36] with different homeostatic mechanisms such as
sliding threshold metaplasticity (violet) and synaptic scal-
ing (green), both described in detail in [31]. (b) Population
firing rate as a function of time. (c,d) Raster plot of spik-
ing activity. The bottom 3 groups of 100 neurons received
rate modulated spiking input with 100ms correlation time
constant to emulate sensory input to a small set of neu-
rons. The timescale of sliding threshold metaplasticity was
τc = 3mins. The timescale for the rate detector and the
scaling dynamics for synaptic scaling were τc = 10s and
τscl = 1h respectively. Because of these slow stabilization
dynamics, the fast interplay between Hebbian plasticity
and recurrent network dynamics leads to rapid population
firing rate destabilization within 10 to 20 seconds for both
learning rules.

[9, 69]. However, these learning rules typically re-
quire fine-tuning and become unstable when input
correlations are non-negligible. Other stable mod-
els arise from a weight dependence in the learning
rule such that high (low) synaptic strength makes
LTP (LTD) weaker [53, 70–74]. Such a stabilizing
weight dependence is advantageous because it can
lead to more plausible unimodal weight distribu-
tions as observed empirically [72, 74]. However,
the unimodal weight distribution, by precluding
multi-stability in the configurations of synaptic
strengths, typically leads to the rapid erasure of
synaptic memory traces in the presence of back-
ground activity driving plasticity [73, 75]. More-
over, when such weight dependent synaptic learn-
ing rules are embedded in a recurrent neuronal cir-
cuit without any additional control mechanisms,
they can succumb to runaway neural activity as
experience dependent neural correlations emerge
in the recurrent circuit [73, 76, 77].

In summary, empirical findings and control-
theoretic considerations suggest that compen-
satory mechanisms capable of stabilizing Heb-
bian plasticity must operate on tightly con-
strained timescales. In practice, such compen-
satory mechanisms must act on similar or even
faster timescales than Hebbian plasticity itself [31,
32, 36, 37, 50, 52, 68]. STDP, as one of the most
common manifestations of Hebbian plasticity in
the brain, can be induced in a matter of seconds
to minutes [25–27, 78, 79]. Homeostatic plasticity,
on the other hand, acts on much longer timescales
of hours to days [14, 16, 19, 29, 55, 56, 80]. This
separation of timescales poses a temporal para-
dox as it renders most data-driven STDP mod-
els unstable [3, 81]. In spiking network models,
this instability has severe consequences (Fig. 3b–
d); it precludes the emergence of stable synaptic
structures or memory engrams [31, 73, 76], unless
the underlying plasticity models are augmented
by RCPs [31, 50, 51, 68, 82]. Overall, these con-
siderations suggest that one or more RCPs exist
in neurobiological systems, which are missing in
current plasticity models.

Putative rapid compensatory processes

What putative RCPs could augment Hebbian
plasticity with the requisite stability and compe-
tition? Here we focus on several possibilities, op-
erating at either the network, the neuronal or the
dendritic level (Fig. 4a). However, we note that
these possibilities are by no means exhaustive.

At the network level, recurrent or feedforward
synaptic inhibition could influence and poten-
tially stabilize plasticity at excitatory synapses
directly. For instance, [83] demonstrated via
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Figure 4: (a) Schematic representation of the many potential loci of rapid compensatory processes. (b) Example of a plastic
network model displaying attractor dynamics in three distinct cell assemblies. Because these dynamics outlast the stimulus
that triggers them they have been considered as neural substrate for working memory. The top panel shows a spike raster,
whereas the bottom panel shows the population firing rates of the three cell assemblies. This particular model uses an
augmented triplet STDP learning rule (cf. Fig. 3) in which heterosynaptic plasticity and single-synapse-level plasticity
have been added as stabilizing RCPs. Moreover, this model relies on a slow form of inhibitory plasticity which normalizes
the overall network activity and ensures that cell assemblies do not grow indefinitely over time by recruiting additional
neurons. This provides a proof of principle that a biologically inspired learning rule can indeed be stabilized by a sensible
combination of RCPs, whereas the same learning rule endowed with slow compensatory mechanisms leads to run-away
dynamics (cf. Fig. 3b–d). Figure adapted from Zenke et al. [82].

dynamic-clamp that a simulated increase in to-
tal excitatory and inhibitory background conduc-
tance, which could originate from elevated lev-
els of network activity, rapidly reduces the am-
plitude of LTP, but not LTD, of the STDP win-
dow. This rapid effect may be mediated through
changes in calcium dynamics in dendritic spines
and could constitute an RCP. Another study [84]
showed that global inhibition in a rate-based net-
work model is sufficient to stabilize plasticity at
excitatory synapses with a sliding presynaptic and
fixed postsynaptic plasticity threshold. Finally,
using a model-based approach, Wilmes et al. [85]
have proposed that dendritic inhibition could ex-
ert binary switch-like control over plasticity by
gating back-propagating action potentials.

Other modeling studies have suggested a role
for inhibitory synaptic plasticity (ISP) [86, 87], in-
stead of non-plastic inhibition, in stabilizing Heb-
bian plasticity. It has been suggested, for in-
stance, that ISP in conjunction with a fixed plas-
ticity threshold at the excitatory synapse could
have a similar effect as the sliding threshold in
the BCM model [88]. Finally, in some experi-
ments excitatory and inhibitory plasticity are not
integrated as independent events, but can influ-
ence each other. For instance, there are cases in
which induction of ISP alone can flip the sign of

subsequent plasticity at excitatory synapses [89].
While inhibition and ISP may act as RCPs, a clear
picture of how these elements tie together has not
yet emerged. Further experimental and theoreti-
cal work is required to understand their potential
for acting as RCPs.

Neuromodulation may also play an important
role in stabilizing plasticity. Neuromodulators
have been implicated in both homeostatic sig-
nalling [21] and in gating the expression of synap-
tic plasticity [90–93]. However, to successfully
serve as RCP, neuromodulatory mechanisms have
to either drive rapid compensatory changes di-
rectly, or substantially reduce the average rate
of Hebbian plasticity in-vivo to enable slower
forms of homeostatic plasticity to preserve sta-
bility. While a detailed account of the role of
neuromodulators goes beyond the scope of this
article (but see [93, 94] for reviews), here we note
that several neuromodulators at least partially
meet one of these core requirements for RCPs.
For example, nitric oxide (NO), which is involved
in synaptic homeostasis and plasticity [95], is re-
leased in response to increased NMDA activity
and decays within some tens of seconds [96]. Be-
cause cell membranes are permeable to NO, the
molecule diffuses rapidly and thus could poten-
tially act as a fast proxy of bulk neuronal activ-
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ity that can be read out locally [97]. Similarly,
dopaminergic transmission can be fast [98] and
is known to affect induction, consolidation and
possibly maintenance of synaptic long-term plas-
ticity [91, 93, 99–101]. A sensible gating strategy
implemented by dopamine or other neuromodula-
tors could result in a drastically reduced and more
manageable average rate of plasticity in vivo. In
contrast, in vitro such neuromodulatory mecha-
nisms might be disengaged, thus potentially cre-
ating less natural and much faster plasticity rates
compared to in vivo. Apart from the neuromod-
ulatory system, recent work has highlighted the
complexity of the local interactions between as-
trocytes and synaptic plasticity which may also
act as RCPs [102–104]. However, to unequivo-
cally answer which aspects of neuromodulation
and glial interactions constitute suitable RCPs
will require further experimental and theoretical
work.

A more well studied possibility for an RCP is
heterosynaptic plasticity, which operates at the
level of individual neurons or potentially dendritic
branches. Heterosynaptic plasticity refers to a
non input-specific change at other synapses onto a
neuron that are not directly activated ([30, 105–
108]). Its viability as putative RCP arises from
the fact that some forms of heterosynaptic plastic-
ity can be induced rapidly, and moreover, similar
to synaptic scaling, can show aspects of weight
normalization [106]. For instance, a rapid form
of heterosynaptic plasticity, in which neuronal
bursting causes bi-directional weight-dependent
changes in afferent synapses, has been observed
recently [107, 109]. While the observed weight-
dependence is reminiscent of Oja’s rule [8], as
strong synapses weaken, it is not identical be-
cause weak synapses can also strengthen. Nev-
ertheless, this form of heterosynaptic plasticity
has been shown to prevent runaway of LTP in
models of feedforward circuits [30] and has been
demonstrated to co-occur with Hebbian plasticity
in experiments [109].

Recently, the utility in stabilizing runaway LTP
has also been demonstrated in a recurrent network
model of spiking neurons [82], in which a similarly
burst dependent form of heterosynaptic plasticity
is crucial to ensure stable formation and recall of
Hebbian cell assemblies (Fig. 4b). Moreover, the
work suggests a potential role of heterosynaptic
plasticity in triggering the reversal of LTP and
LTD [110].

At the level of dendritic branches, a recently de-
scribed form of structural heterosynaptic plastic-
ity [108], involves local dendritic competition be-
tween synapses. Specifically, glutamate induced
structural synaptic potentiation of a set of clus-

tered dendritic spines causes shrinkage of nearby,
but unstimulated spines. Interestingly, even when
structural potentiation was switched off through
inhibition of Ca2+/calmodulin-dependent protein
kinase II (CaMKII), the heterosynaptic effect per-
sists, suggesting a model in which spines send and
receive shrinkage signals instead of competing for
limited resources. Moreover, the observed den-
dritic locality is consistent with work on local or
branch specific conservation of total synaptic con-
ductance [106, 111].

Finally, in some cases heterosynaptic plasticity
might not actually be heterosynaptic, as it may
still depend on low levels of spontaneous synaptic
activity in unstimulated synapses [112]. A recent
biophysical model derived from synaptic plastic-
ity data [113] actually requires such low-levels of
activity to match the data. Interestingly, this
model suggests such “heterosynaptic” plasticity
could arise as a consequence of a rapid (timescale
∼ 12s) homeostatic sliding threshold possibly re-
lated to autophosphorylation of CaMKII.

While heterosynaptic plasticity, like synaptic
scaling, can have a stabilizing effect, it is distinct
from synaptic scaling in two ways. First, het-
erosynaptic plasticity need not multiplicatively
scale all weights in the same manner. Second, it is
unclear whether heterosynaptic plasticity in gen-
eral drives neuronal activity variables to a specific
set point, like synaptic scaling does [24]. Thus,
while heterosynaptic plasticity has the rapidity
to act as a putative RCP, its functional utility
in storing memories requires further empirical and
theoretical study, as it may lack the ability to pre-
cisely preserve ratios of synaptic strengths. How-
ever, its clear functional utility in preventing in-
stability (Fig. 3d), along with even an approxi-
mate preservation in ratios of strengths, could po-
tentially endow the interaction of heterosynaptic
plasticity and Hebbian learning with the ability
to stably learn and remember memories. Further
network modeling, building on promising het-
erosynaptic plasticity models [30, 82, 113], could
be highly instructive in elucidating the precise
properties, beyond rapidity, a putative RCP must
obey in order to provide appropriate competition
and stability to Hebbian plasticity.

Conclusion

The trinity of Hebbian plasticity, competition
and stability are presumed to be crucial for ef-
fective learning and memory. However, a de-
tailed theoretical and empirical understanding of
how these diverse elements conspire to function-
ally shape neurobiological circuits is still missing.
Here we have focused on one striking difference
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between existing models and neurobiology: the
paradoxical separation of timescales between Heb-
bian and homeostatic plasticity. In models, such
a separation of timescales typically leads to in-
stability, unless plasticity is constrained by RCPs
that act much faster than observed forms of home-
ostatic plasticity. In principle, RCPs could be im-
plemented at various spatial scales. Here we have
primarily discussed different forms of heterosy-
naptic plasticity and processes involving synaptic
inhibition as possible candidates. However, rapid
processes involving neuromodulation, glial inter-
actions, or intrinsic plasticity [114–117] could also
constitute RCPs. Thus, identifying the key neu-
robiological processes that provide stability and
competition to Hebbian learning rules remains an
important direction for future research.
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