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Abstract

We review a body of theoretical and experimental research on Hebbian and homeostatic
plasticity, starting from a puzzling observation: While homeostasis of synapses found in exper-
iments is a slow compensatory process, most mathematical models of synaptic plasticity use
rapid compensatory processes. Even worse, with the slow homeostatic plasticity reported in
experiments, simulations of existing plasticity models cannot maintain network stability unless
further control mechanisms are implemented. To solve this paradox, we suggest that in ad-
dition to slow forms of homeostatic plasticity there are rapid compensatory processes which
stabilize synaptic plasticity on short timescales. These rapid processes may include heterosy-
naptic depression triggered by episodes of high postsynaptic firing rate. While slower forms of
homeostatic plasticity are not sufficient to stabilize Hebbian plasticity, they are important for
fine-tuning neural circuits. Taken together we suggest that learning and memory rely on an
intricate interplay of diverse plasticity mechanisms on different timescales which jointly ensure
stability and plasticity of neural circuits.
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∗Author for correspondence (fzenke@stanford.edu)

1

http://rstb.royalsocietypublishing.org/content/372/1715/20160259


Introduction

Homeostasis refers to a family of compensatory processes at different spatial and temporal scales
whose objective is to maintain the body, its organs, the brain, or even individual neurons in the
brain in a dynamic regime where they function optimally. A well-known example is the homeostatic
regulation of body temperature in mammals, maintained at about 37 degrees Celsius independent
of weather condition and air temperature. In neuroscience, homeostasis or homeostatic plasticity
often refers to a compensatory process that stabilizes neural firing rates. In a classic experiment,
cultured neurons that normally fire at, say 5Hz, change their firing rate after a modulation of
the chemical conditions in the culture, but eventually return to their target rate of 5Hz during
the following 24 hours [1]. Thus, the experimentally best-studied form of homeostasis acts on a
timescale of hours to days. This slow form of homeostatic plasticity manifests itself as the rescaling
of the efficacy or weight of all afferent synapses onto a single neuron by a fixed fraction, for instance
0.78. This phenomenon is called “synaptic scaling” [1].

Mathematical models of neural networks often make use of compensatory processes similar to
synaptic scaling to stabilize firing rates in the presence of Hebbian plasticity. Hebbian plasticity
is a form of synaptic plasticity which is induced by and further amplifies correlations in neuronal
activity. It has been observed in many brain areas and can be induced quickly on a timescale of
seconds to minutes. Its effect, however, is often long-lasting. It can last hours, days and possibly
a lifetime. Due to these properties Hebbian plasticity is widely assumed to be the neural basis
of associative long-term memory [2–4]. Moreover, Hebbian learning is thought to be the basis of
developmental changes such as receptive field development [5–9].

However, Hebbian plasticity alone leads to a positive feedback loop in which correlations of pre-
and postsynaptic firing drive potentiation of synapses that increase postsynaptic rates and corre-
lations further, which is unstable. To avoid pathological run-away dynamics of neural activity in
mathematical models, it is necessary to add appropriate constraints to plasticity models [10, 11]. A
typical example of such a constraint is the normalization or rescaling of the sum of afferent synap-
tic weights: When the weight of one synaptic connection increases, weights of other connections
onto the same neuron are algorithmically decreased to keep the total input constant or close to the
optimal target regime. At a first glance, this form of multiplicative normalization [10] seems virtu-
ally identical to homeostatic “synaptic scaling” introduced above. However, these two mechanisms
are fundamentally distinct because they act on vastly different timescales. While normalization in
models typically takes place on a timescale of seconds or less [10, 12–14], in biology the effects of
synaptic scaling manifest themselves only after hours [15, 16]. A similar observation holds for home-
ostatic metaplasticity, which exists on timescales ranging from some tens of minutes to days (Fig. 1;
[17, 18]). Moreover, the difference between experimental data and models cannot be explained by
a simple rescaling of time in the models, because the problem persists for quantitative plasticity
models which capture the time course of biological data.
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Figure 1: The timescales of synaptic scaling or metaplasticity are faster in models than
reported in experiments. Here we plot the timescale of either synaptic scaling or homeostatic
metaplasticity as used in influential modeling studies (gray). For comparison we plot the typical
readout time for experimental studies on synaptic scaling and metaplasticity (red). Publications
suffixed with * describe network models as opposed to the other studies which relied on single
neurons. Note that the model marked with † by Toyoizumi et al. [23] is an interesting case which
has both RCPs and a slow form of homeostasis. Here we aligned it according to its homeostatic
timescale.

However, this difference in timescales may challenge the popular view that in biology Hebbian
plasticity is constrained through homeostatic plasticity [16, 19–22]. The algorithmic normalization
of synaptic weights every second is not the same mechanism as the biological rescaling of synaptic
weights over hours. Although, in the theoretical literature, a rapid stabilizing mechanism is typically
called “homeostatic”, here we will refer to this class of control mechanisms as Rapid Compensatory
Processes (RCPs). The term “homeostatic plasticity” is in the following reserved for slow negative
feedback processes on the timescale of hours or days — a terminology that seems consistent with the
available experimental literature [15, 16]. In this review we focus on this discrepancy of timescales
and ask which biologically plausible processes could constrain Hebbian plasticity. Specifically, we
will try to answer the following questions: Why do we need RCPs to stabilize Hebbian plasticity?
How fast do these processes have to be — hours, minutes, seconds or less? Which mechanisms could
fill this role in Hebbian learning? Moreover, what are the consequences of fast control mechanisms
on memory formation and recall in network models? And finally, if RCPs are a requirement, what is
the role of slower forms of negative feedback implemented by known forms of homeostatic plasticity?

Models of Synaptic Plasticity

Synaptic plasticity exists across different timescales. For instance, synaptic changes induced by a
sequence of four presynaptic spikes in rapid sequence typically decay within a few hundred millisec-
onds [42–44] and are called short-term plasticity. The rapid decay implies that the changes are not
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useful for long-term memory formation, but more likely involved in gain control [42].
Other forms of plasticity induced by classic induction protocols [45–47], can have long-term

effects on the timescale of hours or more. Long-term plasticity is therefore potentially useful for
memory formation [2]. We remind the reader that the induction of long-term plasticity can be as
fast as seconds, but the induced changes persist for much longer. Depending on the direction of
synaptic change, we speak of long-term potentiation (LTP) or long-term depression (LTD).

Under suitable conditions the changes induced by a protocol of LTP or LTD are further con-
solidated after about an hour [48–50]. These effects are often referred to as late-phase long-term
plasticity. In the rest of the paper we focus on plasticity induction and the early phase of long-term
plasticity and neglect consolidation and maintenance.

The diverse effects of long-term plasticity can be cast into a mathematical framework which
describes the change of synaptic efficacy over time. Apart from a few notable exceptions [23, 51–
54], the vast majority of models of long-term plasticity assume a one-dimensional synaptic state
space which represents the synaptic efficacy or weight wij of a synapse from neuron j to neuron i
[5, 8, 9, 33, 55–65]. The evolution wij is then characterized by the differential equation

dwij
dt

= G (1)

in which the function G, often called the “learning rule”, is a member of an infinite dimensional
function space G, the space of all possible learning rules. This space is strongly constrained if we
only focus on plausible learning rules, which are the rules in agreement with experimental findings.

For example, classical stimulation protocols for LTP [45–47], LTD [66, 67], or spike-timing-
dependent plasticity (STDP) [68–70], combine the activation of a presynaptic neuron, or a presy-
naptic pathway, with an activation, depolarization, or chemical manipulation of the postsynaptic
neurons, to induce synaptic changes. In models this is typically formalized by stating that G only
depends on quantities which are locally accessible to the synapse. It is customary to assume that
the main locally accessible variables include: (i) the current synaptic state wij ; (ii) the activity
prej of the presynaptic neuron; and (iii) the state posti of the postsynaptic neuron [64, 71, 72].
Thus we can write dwij

dt = G(wij ,posti,prej). Additionally, G could also depend on low dimensional
information carried by chemical signals such as neuromodulators (see Frémaux and Gerstner [73]
for a review).

Most published learning rules G can be written as the linear sum of different terms in which
each term can be interpreted as a specific manifestation of plasticity. These terms act together to
explain the measured outcome in plasticity experiments. Let us explain the most common ones
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using the following example learning rule:

G(wij ,posti, prej) =

non−associative︷ ︸︸ ︷
g0(wij)︸ ︷︷ ︸

e.g. decay term

+ g1(wij , prej)︸ ︷︷ ︸
“transmitter−induced′′

+ g2(wij ,posti)︸ ︷︷ ︸
heterosynaptic

+

associative︷ ︸︸ ︷
H(wij ,posti, prej)︸ ︷︷ ︸

homosynaptic

(2)

We will discuss each of the terms, going from right to left. H: Co-stimulation of a presynaptic
pathway (or presynaptic neuron) and a postsynaptic neuron, as used in many classic induction
protocols of LTD or LTP, changes the activated synapses. Such input specific changes are called
“homosynaptic” because they affect the same synapses that are stimulated. In the above equation
the homosynaptic changes are characterized by the term H on the right, where H is short-hand for
“Hebbian”. The homosynaptic changes are often further separable into individual contributions of
LTD and LTP (e.g. Song et al. [8], Gerstner and Kistler [74]).

g2: If a stimulation protocol induces a change at other (unstimulated) synapses onto the same
postsynaptic neuron, the effect is called “heterosynaptic” [66, 75–77]1. In Eq. (2) heterosynaptic
effects are described by the function g2 which does not depend on prej , but only on the state of the
postsynaptic neuron. An example of heterosynaptic plasticity is synaptic scaling [1, 19] which has
been modelled using a heterosynaptic term g2 with a linear weight dependence [31].

g1: If presynaptic activity alone is sufficient to induce plasticity — one could think of non-
associative LTP at the parallel fiber to Purkinje cell synapses [79, 80] or spontaneous spine growth
in the presence of glutamate [81] — this is captured by the function g1, which depends on the
presynaptic activity prej , but not on posti.

g0: Finally, a slow drift, a spontaneous growth or decay of the synaptic strength that does not
depend on the input or the state of the postsynaptic neuron is captured by the function g0(wij).

In our example all terms explicitly depend on wij . While this is not a strict requirement it is
customary to limit the allowed range of wij to avoid infinite weight growth. Since big weights are
associated with physically large synapses, while the total space in the brain is limited, a bound
on synaptic weights is reasonable. Depending on the implementation details, the limit can be
implemented either as a “hard bound” or “soft bound” (e.g. Gerstner and Kistler [74], Rubin et al.
[82], Gütig et al. [83]).

Virtually all existing plasticity models can be written in a form similar to Equation (2). Differ-
ences between model formulations arise if (i) prej is interpreted as presynaptic firing rate, presynap-
tic spikes, or as chemical traces left by spikes (e.g. glutamate); (ii) posti is interpreted as postsynaptic
firing rate, postsynaptic spikes, chemical traces left by postsynaptic spikes, postsynaptic calcium,
postsynaptic voltage, or combinations thereof; (iii) the weight-dependence is chosen identical or
differently for each term. With this framework we can now state what we mean by compensatory

1As an aside, we note that the term “heterosynaptic plasticity” is sometimes also used for synaptic changes that
are visible at the connection from a presynaptic neuron j to a postsynaptic neuron i, but induced by the activation
of a third, typically modulatory neuron [78]. However, in this article we do not consider this possibility.

5



processes and address the question why we need them to be fast.

Why do we need rapid compensatory processes to stabilize Hebbian
plasticity?

Intuitively, synaptic plasticity that is useful for memory formation must be sensitive to the present
activation pattern of the pre- and postsynaptic neuron. Following Hebb’s idea of learning and cell
assembly formation, the synaptic changes should make the same activation pattern more likely to
re-appear in the future, to allow contents from memory to be retrieved. However, the re-appearance
of the same pattern will induce further synaptic plasticity. This forms an unstable positive feedback
loop. Anybody who was sitting in the audience when the positive feedback loop between the
speaker’s microphone and the loudspeaker resulted in an unpleasant shriek, knows what this means.
In many cases an unstable system can be made stable by adding sensible control mechanisms [84]
which are thus typically integrated in theoretically motivated plasticity models.

Let us now consider one such classic example of a learning rule. To that end we consider Oja’s
rule [57]

dwij
dt

= G = η
(
xjyi − wijy2

i

)
(3)

where η is a small constant called learning rate. Since Oja’s rule corresponds to a specific choice
of G in Equations (1) and (2), let us highlight the relation. First, in Oja’s rule the presynaptic
activity prej is characterized by the presynaptic rate xj and the state of the postsynaptic neuron
posti by its firing rate yi. Second, and with this in mind, we can now identify two terms on the
right-hand side of Equation (3). Oja’s rule contains a Hebbian term H = ηxjyi which does not
have any weight dependence as well as a heterosynaptic term g2 = −ηwijy2

i which comes with a
negative sign and is linear in the weight. Following our convention from above (Eq. 2) we call the
term heterosynaptic because it acts on all synapses, even those that do not receive presynaptic
stimulation. For simplicity, and following the tradition [57] we combine Oja’s rule with a linear
neuron model yi =

∑
j wijxj .

It is quite intuitive to see how stability arises in this model. As the synaptic weights wij grow,
due to the Hebbian term, the firing rate yi of the postsynaptic neuron increases and therefore the
influence of the negative heterosynaptic term gets stronger. Because the heterosynaptic term has a
superlinear dependence on yi, it is guaranteed to “catch up” with the Hebbian term eventually. It
can be shown that for a linear neuron model and sufficiently small η, Oja’s rule ensures that the
weights converge such that ~wi = (wi1, ..., wiN ) aligns with the first principal component of the data
x, while the squared sum of all afferent weights remains normalized [57].

We interpret the heterosynaptic term in Oja’s rule as RCP: First, it is rapid because it responds
instantaneously to activity fluctuations in yi. Second, it is compensatory because it ensures stability
by effectively enforcing a constraint on the afferent synaptic weights [10, 57]. Biologically, such a
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Figure 2: Illustration of a rapid and
slow compensatory processes in a
variation of Oja’s rule. (a) Here we
used a fast filter time constant τ = 0.1η−1

(cf. Eq. (4)) and plot the output firing
rate yi (solid) and the delayed estimate ȳi
(dashed). (b) Same as in a), but with τ =
2η−1. Model: We simulated dw

dt = xy−wȳ2,
τ dȳdt = y − ȳ and y = wx with x ≡ 1.

heterosynaptic effect could be obtained, for instance, when synapses have to compete for a shared
resource [57, 85] or send chemical signals to each other [86].

One could now ask if we really need this compensatory processes to be rapid. Could we not
simply replace the instantaneous firing rate yi in the heterosynaptic term by a slower variable?
The timescale of the slow variable could be related in a biological system to the time necessary
to estimate the firing rate from, e.g. calcium concentration and translate these into metaplastic
changes in the learning rule. To illustrate the general idea by a concrete example, we take Oja’s
rule, as in Equation (3), except that, in the heterosynaptic term, we replace y2

i by ȳ2
i , where ȳi is a

low-pass filtered version of the postsynaptic rate

τy
dȳi
dt

= yi − ȳi . (4)

If we choose τy = 1ms (for a fixed η of, e.g. η−1 = 10ms), the processes g2 = −ηwij ȳ2
i would still be

considered as rapid (Fig. 2a), but if we choose τy = 1h, it would be considered as slow. When the
compensatory processes is too slow, positive feedback induced by the Hebbian term is prone to take
over and oscillations (Fig. 2b) or even run-away dynamics arise. This is why we generally want the
compensatory processes to be rapid.

The same problematic has also been demonstrated nicely in the Bienenstock-Cooper-Munro
(BCM) model [5]:

τ
dwij
dt

= ηxjφ (yi, ȳi) (5)
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Figure 3: Most plasticity models can
reproduce the notion of a plasticity
threshold reported in experiments.
(a) The change in synaptic efficacy in many
plasticity models is a function of variables
related to postsynaptic activation. The pa-
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point (“threshold”) between LTP and LTD.
(b) Schematic illustration of the action of
the homeostatic moving threshold θ(t) in
the BCM model [5]. When the average ȳ is
larger than the target value κ, θ(t) shifts to
higher values. Likewise, θ(t) shifts to lower
values when ȳ is too low. For y = ȳ = κ
changes in synaptic efficacy are naught.

where φ is a nonlinear function with a characteristic shape characterized by a threshold θ between
LTP and LTD (Fig. 3a), consistent with some induction protocols [70, 87]. The threshold θ depends
on the moving average ȳi over past neuronal activity (Fig. 3b) where ȳi is defined in Equation (4).
This is the reason why the model is said to have a “sliding” threshold.

To ensure stability, the BCM model requires two independent assumptions. First, the sliding
threshold has to be a superlinear function of ȳi [5]. A standard choice is [88]

θ(t) =
ȳ2
i

κ
(6)

where κ is the “target rate” to which the moving average of the postsynaptic firing rate should
converge. Second, τy cannot be “too large” compared to τ , because otherwise oscillations or run-
away activity occur [23, 32, 88]. In fact, the ratio τy

τ determines the stability of the model.
Oscillations and instabilities are generic to many nonlinear systems and not limited to the

above models. Control theory enables theoreticians to identify parameter ranges that lead to stable
behavior and avoid instabilities [31, 84, 89]. The control theoretic analysis of several plasticity
models relying on moving averages of the postsynaptic firing rate shows that the response timescale
of the compensatory processes is constrained from above [23, 32, 88, 90]. In other words, the
response time of the firing rate control has to be “relatively fast” compared to Hebbian plasticity.
But how fast is fast enough? Is it seconds, hours or days?

8



How fast do compensatory processes have to be?

Because time can be rescaled arbitrarily in the above model, a quantitative answer to the question
can only be given for a specific combination of neuronal, network and plasticity model parameters
once units of time are calibrated with biological data. In other words, we need to put a numerical
value on τ to set the timescale of τy. To fix a timescale2 one can thus use any quantitative plasticity
model which has been fitted to experimental data in combination with plausible spiking neuron
models embedded into a spiking neural network with a biologically inspired activity state.

Such an analysis was done in Zenke et al. [32] using the plasticity model by Pfister and Gerstner
[33], combined with negative feedback via either a sliding threshold or synaptic scaling. The critical
timescale τcrit was determined as the value τy (Eq. (4)) above which a recurrent neural network,
initially tuned to a low activity asynchronous state [91, 92], generates run-away activity. Using
simulations and mean field theory τcrit was found to be on the order of seconds to minutes. Thus,
the negative feedback needs to be too rapid to be linked to the known experiments of homeostatic
synaptic plasticity reviewed in Figure 1.

Several remarks are in order. First, although signatures of the stereotypical activity dependence
of the BCM model (Fig. 3a) are also present in STDP data and captured by many modern plasticity
models [33, 61–63, 65, 93], the existence of a sliding threshold mechanisms is still a topic of ongoing
debate. However, we have shown analytically, and confirmed in simulations, that the instability
that arises through slow feedback in the BCM model is virtually identical to the situation in which
the sliding threshold in Eq. (5) is replaced by a fixed threshold and instead synaptic scaling is added
to the model [32]. Additionally, the analysis suggests that similar temporal requirements hold for
an entire family of plasticity models with an explicit rate dependence (see Yger and Gilson [90] for
a review). Note, however, that additional instabilities can arise in the case of synaptic scaling [89].

Second, the critical timescale τcrit depends not only on the plasticity model, but also on multiple
parameters of the neuron and network model. Moreover, the results showed a strong dependence
on background firing rate which was comparatively high in the Zenke et al. [32] model (∼3Hz). On
the other hand, robust stability is only possible if the actual value of τy is chosen much smaller than
τcrit. The precise value of the critical timescale has therefore to be taken with care: We believe that
any published numerical value for τcrit may be off by a factor of 5 or 10 (because of uncertainty in
choices of neuronal and network parameters), but it is unlikely to be off by a factor 100. In any case,
despite the remaining uncertainty, these numerical results suggest that most experimental forms of
homeostatic plasticity are too slow to stabilize Hebbian plasticity as captured by current models
and that RCPs are required to maintain stability.

A recent voltage based plasticity model by Jedlicka et al. [29] corroborates the above findings.
2Strictly speaking, the notion of a “timescale” is meaningless for a nonlinear differential equation like Eq. (5), it

is only defined for linear dynamical systems. The notion can be rescued, however, in the vicinity of a fixed point
around which the system can be linearized. We refer the interested reader to the Supplementary Material where we
provide additional information on this important, but technical issue.
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By fitting their model with a rapid sliding threshold to in vivo data from dentate gyrus, the authors
find τy ≈ 12s which allows them to speculate that the sliding threshold could be linked to CaMKII
inactivation.

Interestingly, Toyoizumi et al. [23] arrive at qualitatively similar conclusions by carefully analysing
the different phases of synaptic dynamics following monocular deprivation (MD) [39]. Specifically,
they find that a fast sliding threshold guarantees stability, but provides a poor fit to experimental
data, whereas as slow sliding threshold compromises stability altogether. Consequently, they sug-
gest a model in which LTP and LTD saturate quickly to attain steady states. Additionally, a slow
form of homeostatic plasticity is required to capture the data (cf. Fig. 1), but is no longer required
to provide stability. In their model LTP and LTD saturate due to soft weight bounds. However, the
model does not crucially depend on this point and would presumably also work with other RCPs.

Finally, these findings are in good empirical agreement with many existing simulation studies of
plastic network models (Fig. 1) — in each of these, a rapid homeostatic control mechanisms on a
timescale of seconds to minutes was implemented to maintain stability [14, 25, 27, 28, 33, 63, 94].

We can summarize our insights as follows. The fact that Hebbian plasticity has to be appropri-
ately constrained through stabilizing mechanisms to avoid run-away activity is well known. Classic
models such as Oja’s rule or the BCM model, for example, explicitly include appropriate mech-
anisms based on the postsynaptic firing rate as an indicator and driver of stabilizing processes.
However, the fact that these processes have to be rapid in absolute terms, only becomes apparent
when units of time are fixed to a biologically meaningful timescale. Moreover, RCPs need to be
even more rapid in large recurrent network models, because a large number of plastic synapses
tends to amplify instabilities unless the learning rate is scaled with the inverse number of synapses.
Accumulating evidence suggests that biological forms of LTP and LTD have to be accompanied by
RCPs which operate on timescales of seconds to minutes and are thus orders of magnitude faster
than most known forms of homeostatic plasticity (cf. Fig. 1). This answers the questions as to why
RCPs are needed and gives us first upper limits on the intrinsic timescale of RCPs to successfully
stabilize LTP and LTD. However, do we want RCPs to be a rapid version of homeostatic plasticity
with a single set point? We will now discuss this question in some more detail, before we turn to
potential mechanisms.

Functional consequences of enforcing constraints on short timescales

Homeostatic mechanisms are typically interpreted as negative feedback processes [22], which rely
on an error signal to maintain a given control variable of a dynamical system at designated target
values, or set points. Many control systems have a single set point. For instance, an autopilot tries
to maintain a single given course at any given time. Similarly, most models of homeostatic plasticity
have a single target value, such as the average postsynaptic firing rate (see κ in the BCM model
Eqs. (5) and (6)). Suppose we are dealing with a fast negative feedback processes, what are the
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Figure 4: The effect of slow homeostatic
plasticity and rapid compensatory pro-
cesses on the neuronal code. (a) Fluctuat-
ing external world stimulus over time. (b) Neu-
ral activity “A = w × input” over time. A
slow negative feedback mechanism (homeosta-
sis) adjusts w to push A towards a single target
(dashed line) which is rarely reached; negative
feedback is modelled as τslow

dw
dt = (Target−A).

With a slow homeostatic mechanism, a neuron
can track input relatively accurately. (c) Same
as b, but for a rapid compensatory process
(τslow = 50τfast) which drives the activity
quickly to the target value. If the timescale of
feedback is comparable to that of the stimulus,
negative feedback interferes with the neuron’s
ability to track the stimulus. (d) RCPs enforc-
ing an allowed range (limits indicated by dot-
ted lines). Even though the neuronal activity
does not capture all the diversity of the input,
it does capture some of it. Here we modeled
the RCPs as the following nonlinear extension
of the above model: τfast

dw
dt = f(Target − A)

with f(x) = x for ‖x‖ > Limit and f(x) = 0
otherwise.
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functional consequences for plasticity and circuit dynamics? To do so, we focus on commonly found
forms of firing rate homeostasis (FRH) with a single firing rate set point [15, 16, 95].

Neurons encode information in changes of their electrical activity levels. For instance, subsets
of simple cells in the visual system fire spikes in response to specific edge-like features in the visual
field [96]; cells in higher brain areas respond with high specificity to complex concepts and remain
quiescent when the concept they are coding for is not brought to mind [97–99]; and finally certain
neurons respond selectively with elevated firing rates over extended periods during working memory
tasks [100–102]. The ability of neurons to selectively indicate through periods of strong activity the
presence of specific features in the input or specific concepts in working memory is an important
condition for computation.

Is the notion of a single set point compatible with the task of neurons to selectively respond
to stimulation? If negative feedback control of firing rates is slow (e.g. synaptic homeostasis),
neuronal firing can deviate substantially from the mean firing rates during short times and thus
encode information (Fig. 4a,b). However, we have strong reasons to believe that slow homeostatic
control mechanism cannot stabilize the ravaging effects of Hebbian plasticity. So what can we
say about a putative RCP? If it were to act like FRH, but on a short timescale (e.g. seconds to
minutes), neural codes based on neuronal activity become problematic because synaptic plasticity
starts to suppress activity fluctuations which could be carrying important information (Fig. 4c).
For example, if the RCP has a timescale of two seconds, rapid stimuli that change on a timescale
of 0.5 seconds would be transmitted as a rate signal of the postsynaptic neuron while stimuli
sustained for more than 5 seconds would be suppressed by compensatory synaptic changes. Even
more alarmingly, certain forms of homosynaptic plasticity, like the BCM [5] or the triplet STDP
[33] model endowed with a rapid sliding threshold, not only suppress high activity periods, but also
“unlearn” previously acquired selectivity and erase memories (Figs. 4a,c and 5a–d). Therefore rapid
compensatory processes which enforce a single set point are hardly desirable from a functional point
of view. Thus the requirement of fast negative feedback control over Hebbian plasticity with a single
set point poses a problem in itself.

It is important to appreciate that this problem arises from the combination of a single target
with the requirement to implement negative feedback on a short timescale. Fortunately, most forms
of homeostatic plasticity are slow (cf. Fig. 1). Thus, known homeostatic mechanisms do not interfere
with neuronal coding. For RCPs not to interfere with coding either, it thus seems important that
they do not enforce a single set point constraint on postsynaptic activity. Nevertheless, these RCPs
have to prevent run-away activity.

There could be at least one simple solution to this conundrum [23, 103]. Suppose there are two,
or more, set points enforced by two or more RCPs. For instance, one RCP could activate above a
certain activity threshold and ensure that neuronal activity does not exceed this threshold. Similarly,
a second mechanisms could activate below another lower activity threshold. The combined action
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of the two mechanisms enforces neural activity to stay within an allowed range, but still permits
substantial firing rate fluctuations inside that range (Fig. 4d).

When such a pair of RCP is combined with a form of Hebbian plasticity which has its plasticity
threshold within the limits of the allowed activity regime, the neural activity of the compound
system naturally becomes multistable for prolonged stimulation with the same stimulus. Within
the allowed range no RCP is active, but Hebbian plasticity is intrinsically unstable. Thus, for a
stimulus sustained longer than the timescale of the RCP and Hebbian learning, any value of the
postsynaptic rate within the allowed region will lead to either LTP or LTD until the system reaches
the limits at which either RCP rapidly intervenes by undoing any excess LTP or LTD from there on.
The compound system exhibits therefore two, potentially stimulus dependent, stable equilibrium
points, one at low and one at high activity.

Let us apply these considerations to two different systems, viz., a sensory system and a memory
system. To be concrete, we assume that in either system the timescales of both LTP induction
and RCP are two seconds. In the sensory system, each neuron will respond in a graded manner to
short stimuli (say, with a duration of half a second) because synapses hardly change during a single
stimulus duration. However, the repeated stimulation with different stimuli will cause long-lasting
weight changes. The location of the high-activity fixed point depends on the stimulus ensemble
used during stimulation. Moreover, if we drive the neuron with a single sustained stimulus, the
high-activity fixed point adjusts on the timescale of a few seconds and reflects the value of the
input.

The case of a memory system was considered in [103]. Suppose the high-activity fixed point
corresponds to a memory retrieval state, while the low-activity equilibrium is associated with a
quiescent memory which is not being recalled. Because both states are stable, it is irrelevant
whether the memory is recalled every other minute or once a year. Importantly, this is different
from models with rapid FRH, which might require neuronal activity to regularly turn on and off to
satisfy the constraint. An example for this is the network model by Litwin-Kumar and Doiron [14]
in which inhibitory synaptic plasticity (ISP) acts as rapid FRH with a single activity fixed point.

We can therefore answer the third of the questions raised in the introduction: The functional
consequences of rapid control mechanism with a single set point are that neurons lose the flexibility
that is necessary for coding. The consequences are therefore undesirable and the proposed solution is
to design RCPs that allow for several set points or a target range of permissible activity. In the next
sections we will first discuss common ways to constrain unbounded weight growth and explain why
they are insufficient to provide stability, before we turn to potential candidate plasticity mechanisms
which could act as RCP. Finally, we show an example of a spiking network model based on these
principles which forms and recalls memories encoded in cell assemblies.
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Potential mechanisms

To stabilize Hebbian plasticity, any RCP at the synaptic, dendritic, neuronal or network level can
be considered. Due to temporal and spatial constraints of the biological substrate it seems most
likely, however, that the fastest mechanisms are implemented as close to the synapse as possible.

At the synaptic level, excessive growth has traditionally been limited by soft or hard bounds
on individual synaptic weights or other choices of explicit weight dependence of the Hebbian and
heterosynaptic terms in Eq. (2) [8, 10, 31, 65, 82, 83, 104, 104–107]. For example, to avoid bimodal
weight distributions, which sometimes arise in competitive models, but are not observed in biology,
a range of multiplicative plasticity models [31, 82, 83, 104, 105, 108], with an appropriate choice of
the weight-dependence of H in Eq. (2), have been devised. However, bounds on individual synaptic
weights only impose an implicit constraint on the postsynaptic activity. To see this, consider a
permissible range of individual synaptic strength of, say, ±50% around the initial efficacy, which
seems not uncommon for plasticity induction protocols. However, by setting this range we do not
automatically exclude the situation in which all synapses increase their efficacy by 50% which would
in all likelihood correspond to pathological activity levels.

To avoid such run-away activity, plasticity has to ensure that not all synapses are potentiated or
depressed equally. Rather there should be some form of competition which ensures that when one
set of synapses is potentiated other synapses are depressed by a certain amount. While some degree
of competition can be seen in STDP models, in which presynaptic spikes compete in time to elicit a
postsynaptic spike [8, 58, 109, 110], this competition is generally weak [31] and without additional
constraints, activity levels still succumb to run-away effects with detrimental consequences in recur-
rent neural networks [14, 32, 103]. Robust competition, for instance, through a BCM-like threshold
[5] or explicit constraints on the sum of weights [10], are therefore of paramount importance for
plasticity models.

In summary, there exist multiple mechanisms to limit growth of individual synaptic weights.
However, to achieve robust synaptic competition and stability of output firing rates, more explicit
activity constraints are required, as exemplified in the BCM model, or through explicit heterosynap-
tic interactions, similar to Oja’s rule (cf. Eq. (3)). We have already argued that these constraints
need to be enforced rapidly. We now ask what possible mechanisms at the neuronal or network
level could achieve that.

At the network level RCPs might be implemented by inhibition and ISP which could influence
plasticity at excitatory synapses either directly or indirectly. Some theoretical forms ISP are known
to implement a rapid form of FRH for individual neurons [14, 111]. With accumulating experimental
evidence for ISP [95, 112, 113] it therefore seems likely that synaptic inhibition influences plasticity
of excitatory synapses at least indirectly through changes in activity. However, in experiments the
timescale of FRH mediated through ISP appears to be relatively slow [95] and it remains to be seen
whether biological forms of ISP can act as RCP or whether they have a rather homeostatic role.
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However, in some cases, inhibition without ISP can have a stabilizing effect. Lim et al. [114] have
recently demonstrated that this can indeed lead to stability of certain forms of Hebbian plasticity.
Moreover, inhibition can also directly affect and regulate excitatory plasticity [115]. Particularly
interesting in this context are results by Delgado et al. [116] who observed total-conductance-
dependent changes of the STDP curve depending on excitatory and inhibitory background input.
Their results suggests that increased, but balanced, excitatory and inhibitory input biases the
STDP window towards LTD and can thus act as a RCP. Delgado et al. [116] demonstrated this in a
single-neuron feed-forward model, but it is not yet known whether these results generalize to larger
networks.

At the neuronal level, algorithmic normalization of afferent synaptic weights is a commonly
used mechanism to stabilize Hebbian plasticity in network models while simultaneously allowing
structure formation [9, 10, 13, 14]. While such rapid and precise scaling at the neuronal level has
been criticized as biologically implausible [5], an “approximate” scaling could potentially be achieved
through heterosynaptic plasticity at the dendritic level [117].

Heterosynaptic plasticity has moved back in the focus recently, because of its potential role
as RCP [20, 21, 86, 103, 118]. Importantly, some forms of heterosynaptic plasticity are fast, and
provide primarily negative feedback in response to high postsynaptic activity levels [20, 119] or in
the presence of strong LTP on a dendritic segment [86]. This is reminiscent of Oja’s rule (Eq. (3))
and seems well suited to counteract run-away LTP. In contrast to Oja’s rule, these heterosynaptic
changes are induced by bursts of postsynaptic activity which implies that the quadratic term y2

i in
Eq. (3) should be replaced by a term that is triggered either by firing rates yi above some threshold
[118] or by a higher power such as y4

i [103].
In models which also show run-away LTD at low activities (e.g. [33, 63]), an additional RCP is

needed which either saturates or counteracts LTD. Possible forms of plasticity include, but are not
limited to, transmitter-induced plasticity, homeostatic scaling-up or spontaneous spine formation.

In the following section we review a plasticity model which combines Hebbian plasticity with
two RCPs that enable more than a single set point of neuronal activity. We also discuss, in the
context of the model, the potential role of additional slow homeostatic mechanisms.

Learning and recall in a recurrent spiking network model

We now discuss a learning rule which combines a plausible model of Hebbian plasticity with two
additional RCPs [103]. For sensible combinations this compound model does not suffer from the run-
away effects of purely Hebbian plasticity and exhibits intrinsic multistability instead (cf. Fig. 4d).

The basic logic of multistable plasticity can be summarized as follows. At high activity levels
a rapid form of heterosynaptic plasticity limits run-away LTP and creates synaptic competition.
Similarly, at low activity levels an unspecific form of plasticity which only depends on presynaptic
activity prevents run-away LTD. The well-orchestrated interplay between these adversarial plasticity
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Figure 5: Firing rate stabilization, synaptic weights, and feature selectivity through
RCPs. (a) Schematic figure of single neuron with two distinct input pathways. The “active”
pathway consists of 40 Poisson neurons switching their rates synchronously between 2, 10 and
20Hz. The control pathway consists of 400 neurons all firing constantly at 2Hz. Synaptic plasticity
is modeled with triplet STDP [33] with a BCM-like sliding threshold as defined in Eqs. (4–6) All
weights are initialized at the same value and can freely move between hard bounds at zero and
≈ 6 times the initial value. (b) Population firing rates of the input populations averaged over 2 s
bins. Firing rates in the active pathway (solid line) are switched three times from 2Hz to a higher
rate and back (10Hz, 20Hz and 10Hz for 50 seconds each time), whereas firing rates in the control
pathway are constant at 2Hz. (c) Output firing rates of a single postsynaptic neuron. Purple:
Slow sliding threshold, with time constant τy = 1h; Green: Fast sliding threshold, τy = 10s; (see
Zenke et al. [32], κ=3Hz in Eq. (6)). Top and bottom show the same firing rate plot for different
y-axis ranges. (d) Relative weight changes for 10 randomly chosen weights from each pathway for
the slow (purple) and the fast (green) sliding threshold. Solid lines correspond to active pathway
weights and dashed lines to the control pathway. Note that for the fast sliding threshold the
active pathway develops weaker synapses than the control pathway. For the slow sliding threshold
all weights saturate. (e) Simplified sketch of the same setup as in a, but with two postsynaptic
neurons. The only difference between the two neurons is the choice of initial conditions of the
synaptic weights. For Neuron 2 the active pathway weights are initialized at a lower value than for
Neuron 1. All synaptic weights exhibit triplet STDP combined with heterosynaptic plasticity (see
Zenke et al. [103]). (f) Output firing rates of the two neurons over time. Neuron 1 (blue) responds
selectively (with rates >30Hz) to the elevated inputs in the active pathway (cf. b). Neuron 2
(orange) continues to fire with low firing rates. (g) Evolution of weights over time for Neuron 1.
Active pathway weights are plotted as solid lines and control pathway weights are dashed. For
Neuron 1, the synapses in the active pathway undergo LTP during the first strong stimulation of
the active pathway. However, weights quickly saturate. Synapses in the control pathway exhibit
heterosynaptic depression. (h) Same as g, but for Neuron 2. The weights in the active pathway are
slightly depressed during initial stimulation.
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mechanisms dynamically creates multistability of neuronal activity and prevents pathological run-
away effects.

Our approach is quite general and many Hebbian plasticity models can be stabilized through
the addition of two non-Hebbian forms of plasticity. For illustration purposes, we will now focus
on the triplet STDP model for which biologically plausible sets of model parameters exist [33]. To
prevent run-away LTP we require a mechanism which balances out potentiation at high activity
levels. To that end, we use a form of weight-dependent, multiplicative heterosynaptic depression
[21, 103, 118]. Our choice of a purely heterosynaptic RCP is one possibility, but other homosynaptic
forms of plasticity could achieve similar results. For instance, “heterosynaptic” LTD [29, 120] which
requires low presynaptic activity for depression in the unstimulated pathway, is one possibility.
In short, as long as LTP in a strongly stimulated pathway is accompanied by either “no change”
or synaptic depression of synapses with low levels of presynaptic activity, run-away LTP can be
avoided. To similarly prevent run-away LTD in our model we introduced a hypothetical form of
transmitter-induced plasticity. Together the three plasticity mechanisms — Hebbian plasticity and
two RCPs — work in symphony to generate stable levels of neuronal activity.

Let us consider the weight wij from a presynaptic neuron j to a postsynaptic neuron i. Although
the full model is an STDP model, we now express its core ideas in terms of a rate model of the pre
and postsynaptic rates xj and yi:

dwij
dt

= δ · xj︸ ︷︷ ︸
Transmitter-induced

+η · xjyi (yi − θ)︸ ︷︷ ︸
Triplet model

−β · (wij − w̃ij) y4
i︸ ︷︷ ︸

Heterosynaptic

. (7)

Here, δ and β are strength parameters for the two non-Hebbian components of the plasticity
model; η is the strength parameter (learning rate) for Hebbian plasticity; and w̃j serves as a ref-
erence weight that can be related to consolidation dynamics [54, 103]. Note, because the negative
feedback plasticity mechanisms are “rapid”, there is no low-pass filtered variable ȳ in this expression.
Runaway effects which normally would occur in the triplet STDP model without RCPs (Fig. 5a–d)
are avoided with the additional plasticity mechanisms. Due to its rapid action and the high power,
the heterosynaptic term in Eq. (7) acts as a burst detector [118] which dominates at high activity
levels and prevents LTP run-away dynamics (Fig. 5e,f).

For sensible choices of δ and β, neuronal firing rates remain in intermediate regimes (Fig. 5f)
and synaptic weights in the model converge towards stable weights ŵ whose values are dependent
on the activation history and enable the formation of long-term memories (Fig. 5g). Importantly,
the model preserves the plasticity threshold between LTD and LTP of the original triplet STDP
model. The triplet STDP model together with the non-Hebbian plasticity mechanisms, dynamically
creates one unstable and two stable equilibrium points. The activity level of the higher stable fixed
point depends on the stimulus. In particular, it is sensitive to the number, firing rate and temporal
structure of the active synaptic inputs and a stronger stimulus will typically result in a higher
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Figure 6: Reproducible responses to input stimuli with varying strength. (a) Population
firing rate of active input pathway for the continuation of the simulation shown in Figure 5b,e–h.
The neuron is stimulated 16 times with 4 interleaved steps of increasing input firing rate in the
active pathway. (b) Output firing rate of Neuron 1 (200ms bins; cf. Fig. 5f). After the first set
of stimuli, responses to the later sets remain graded and are overall reproducible. (c) Data points
from a and b (input and output) plotted against each other.

steady state response. For any given stimulus, synaptic weights converge rapidly towards one of two
possible stable equilibrium states (Fig. 5f–h). First, there is a “selective” equilibrium state associated
with high postsynaptic activity. In this state some weights are strong while other weights onto the
same postsynaptic neuron remain weak. Thus the neuron becomes selective to features in its input
(Neuron 1 in Fig. 5f and g). Second, there is a “non-selective” equilibrium at low-activity (Fig. 5f and
h). Which fixed point a neuron converges to depends on its initial conditions, lateral interactions
and the details of the activation pattern (Fig. 5g,h). Once weights have converged to one of the
respective stable states, they keep fluctuating, but do not change on average. Since the RCPs do
not impose a single set-point, activity patterns are not unlearned when a certain input is kept active
(inactive) for extended periods of times (compare Fig. 5d with 5g,h).

As a result, Neuron 2 shown in Fig. 5h shows “no learning” which seems undesirable at first.
However, it is in fact useful for such a stable equilibrium to exist when learning is considered as
a network phenomenon. Other neurons (Neuron 1 in our case) already are selective and code for
a given stimulus. Analogously, Neuron 2 might in fact code for a different stimulus which is not
active at the moment, in which case we would like to perturb it as little as possible while other
neurons “learn” (Fig. 5h). Similar dynamics can be achieved in learning models with strong lateral
inhibition which completely suppresses neuronal activity and thus also associative plasticity. In the
present scenario, however, this is not the case. Neuron 2 is still firing with some low background
activity throughout (Fig. 5f).

There are several aspects worth noting about the model. First, heterosynaptic plasticity does
not only stabilize Hebbian plasticity in the active pathway, it also introduces synaptic competition
between the active and the control pathway (Fig. 5g). In contrast to BCM-like models in which
heterosynaptic depression of the inactive pathway depends on intermediate periods of background
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activity in between stimuli [29, 88], here the heterosynaptic depression happens simultaneously
to LTP induction (Fig. 5g). Second, although the learning rule effectively implements a rapid
redistribution of synaptic weights reminiscent of synaptic scaling, it is still a fully local learning
rule which only depends on information which is available at the synapse (cf. Eq. (7)). Third,
although the learning rule effectively implements bistable dynamics for each stimulus, the “selective”
equilibrium level remains stimulus dependent, which allows the neuron to respond in a graded and
reproducible way to input stimuli of varying intensity (Fig. 6). Fourth, in general the reference
weight w̃ is not fixed, but follows its own temporal dynamics on a slower timescale (≈ 20min

and more). Such slow complex synaptic dynamics are essential to capture experiments on synaptic
consolidation [50, 54, 121], but could similarly be used to model slow forms of homeostatic plasticity
[23].

Finally, the stability properties of the learning rule in Eq. (7) are not limited to simple feed-
forward circuits, but generalize to more realistic scenarios. Specifically, the combination of het-
erosynaptic and Hebbian plasticity enables stable on-line learning and recall of cell assemblies in
large spiking neural networks (Fig. 7a,b; [103]). Stationary firing rates in the model depend on the
connectivity pattern and the spiking statistics of active inputs. In a recurrent network, however,
output spike trains pose as inputs to other neurons. As a nontrivial consequence, stationary so-
lutions of the network state exhibit firing rate distributions which are uni-modal and long-tailed
(Fig. 7c,d). Individual neuronal firing rates only stabilize under stationary conditions. If the rates
are non stationary, for instance due to the inclusion of additional adaptation processes in the neuron
model, rates in the model drift on behavioral timescales (see Zenke et al. [103] for details).

In summary, orchestrating Hebbian plasticity and RCPs on comparable timescales dynamically
generates multistability. This reconciles the experimentally observed fast induction of synaptic
plasticity with stable synaptic dynamics and stability of learning and memory at the single neuron
level as well as in large networks. However, there are a few caveats with this approach which we
will discuss in the following.

Problems of RCPs at the single neuron level

Consider a population of neurons with plastic synapses which follow intrinsically stable plasticity
dynamics such as the ones described in the last section. To encode and process information effi-
ciently, neuronal populations need to create internal representations of the external world. Doing
this efficiently requires the response to be sparse across the population. In other words, only a sub-
set of neurons should respond for each stimulus. Moreover, different stimuli should evoke responses
from different subsets of neurons within the population to avoid that all stimuli look “the same” to
the neural circuit. Finally, individual neurons should respond sparsely over time. Imagine a neuron
which is active for all possible stimuli. It would be as uninformative as one which never responds to
any of the inputs. Therefore, to represent and process information in neural populations efficiently,
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Figure 7: Stable activity in a recurrent neural model with ongoing plasticity. (a) Memory
recall in associative cell assemblies through selective delay activity in a network which previously
has learned to distinguish between four repeating input patterns [103]. The colored bars at the
top indicate time and duration of external stimulation with one out of four stimuli. The color
indicates stimulus identity. The spike raster in the middle shows spiking activity of 256 randomly
chosen excitatory cells from the network. The graph at the bottom shows the firing rate of the
four subpopulations defined by the cell assemblies in the network. The multistable plasticity model
of Eq. (7) is active throughout the simulation. (b) Histogram of the coefficient of variation of the
inter-spike-interval of excitatory cells in the network during the interval indicated by the black range
bar in a. (c) As in b, but for mean neuronal firing rates over the same interval. (d) Distribution
of synaptic efficacies of plastic recurrent synapses at the end of the network simulation. Figure
adapted from Zenke [122] and Zenke et al. [103].
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different neurons in the population have to develop selectivity to different features.
Multistable plasticity at the neuronal level as described above does not prevent neurons from

responding weakly to all stimuli (see, for example, Neuron 2 in Fig. 5f). This is a direct consequence
of the fact that the model presented here does not have a sliding threshold like the BCM model.
Moreover, with more similar initial conditions and in the absence of lateral inhibition both Neuron 1
and 2 could have developed selectivity to the same input. Thus, in a large network in which all
synapses are changed by the intrinsically stable plasticity rule introduced above, all neurons could
end up responding to the same feature. How can such an undesired outcome be avoided?

To successfully implement network functions like the ones shown in our example (Fig. 7), several
network parameters and properties of the learning rules themselves need to be fine-tuned and
maintained in sensible parameters regimes. For instance, successful learning as demonstrated in
Zenke et al. [103] depends on sensible choices of the initial synaptic weights and connectivity values.
To achieve the necessary degree of tuning and maintenance, biological networks presumably rely on
additional forms of plasticity which drive the network towards a dynamical state which is conducive
for learning. However, due to the intrinsic stability of the learning rule, these additional mechanisms,
for instance a BCM-like sliding threshold, can now safely operate on much longer timescales. This
suggests that homeostatic plasticity and metaplasticity could fulfill this fine-tuning and maintenance
role.

What is the role and scope of slower homeostatic plasticity mecha-
nisms?

Diverse homeostatic mechanisms exist in the brain at different temporal and spatial scales [123–127].
We have argued that RCPs are important for stability, but what advantages do slow homeostatic
mechanisms have and what is their computational role?

An advantage of slow homeostatic processes is that they can integrate activity over long timescales
to achieve precise regulation of neural target set points [19, 31, 89]. Longer integration times also
allow to integrate signals from other parts of a neural network which take time to be transmitted as
diffusive factors [124, 128]. Slower homeostasis thus seems well suited for control problems which ei-
ther require fine-tuning or a spatially distributed homeostatic regulation of functions at the network
level.

There are at least two important dynamical network properties which are not directly control-
lable by neuronal-level RCPs (Eq. (7)). First, temporal sparseness at the neuronal level is not
automatically guaranteed. A neuron that never responds to any stimulus will never learn to do
so under multistable plasticity, if the LTP threshold is too high. Similarly, a neuron that always
responds is uninformative, but will not change its behavior if the LTD threshold is too low. Sec-
ond, spatial sparseness at the network level, in the sense that for any stimulus a subset of neurons
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responds, is also not automatically guaranteed. Lateral inhibition is a suitable candidate to decorre-
late responses of different neurons in a network, but, as excitatory synapses change during learning,
the strength of lateral inhibition needs to be co-regulated.

The problem of temporal sparseness can be solved by any mechanism which ensures that a
neuron which has been completely silent for very long, eventually “gets a chance” to reach an
activity level above the LTP threshold. This can be achieved by either lowering the threshold
as in the BCM theory [5, 88, 103] or by slowly increasing the gain of either the neuron itself or
the excitatory synapses through other forms of slow homeostatic plasticity [23, 129, 130]. Finally,
similar homeostatic effects could be achieved by dis-inhibition through the action of neuron specific
ISP [112] or by decreasing the response of inhibitory neurons [40, 131]. Conversely, a neuron that
is uninformative because it is always active could decrease its response to some stimuli by the
opposite action of one or several of the homeostatic mechanisms mentioned above, such as increased
inhibition, reduced excitation, or reduced excitability.

While it is conceivable that mechanisms addressing the issue of temporal sparseness could act
locally at the neuronal level, it is clear that enforcing spatially sparse activity at the population level
can only be achieved in a non-local manner. A common approach to guarantee spatial sparseness
in models, is to include lateral inhibition, as done in subspace learning algorithms [132, 133], sparse
coding paradigms [134, 135] or models of associative memory [14, 103, 136–140]. However, achieving
appropriate levels of inhibition can be difficult, especially if excitatory synaptic weights are not
static, but change over time and on a per neuron basis [111]. To solve this task in biological
networks, ISP would be a natural candidate. However, most existing models of ISP are purely local
and tune inhibition on a per neuron level [111, 112, 141]. More specifically, ISP acts as a neuronal
RCP which rapidly drives firing rates to a single stable set point (cf. Fig. 4; Vogels et al. [111]).
To achieve a certain level of spatial sparseness through any form of homeostatic plasticity, requires
a signal with a wider scope which encodes network activity [124, 128]. Using such a signal it is
then possible to modulate plasticity [73]. For example, in Zenke et al. [103] ISP is modulated by a
low-pass filtered signal which encodes network activity. As a result, the combination of intrinsically
multistable plasticity at excitatory synapses and ISP, ensures that recurrent inhibition is tuned to
a level where only one cell assembly can be active at any given time. Importantly, this homeostatic
mechanism does not have to be permanently active. For instance, once the inhibitory feedback
within the model is tuned to the “sweet spot” at which the network can operate, ISP can be turned
off safely without impairing stability. Similarly, it seems likely that some forms of homeostatic
plasticity could be dormant for most of the time and spring into action only during the initial phase
of development [142] or when an extreme external manipulation changes the network dynamics [1].

We are thus able to answer the final question from the introduction as follows: Slow homeostatic
mechanisms tune parameters of plasticity rules and neurons to enable efficient use of the available
resources in networks. For example, for the sake of efficiency, no neuron should be never active;
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no neuron should be always active; the number of neurons that respond to the exact same set of
stimuli should stay limited.

Discussion

Taken together with the results from the previous sections, these insights suggest two distinct roles
for negative feedback on different timescales. First, RCPs on short timescales stabilize Hebbian
plasticity and make synapses onto the same neuron compete with each other. Heterosynaptic
plasticity is likely to play a major role for these functionalities. Second, homeostatic mechanisms on
slower timescales achieve fine-tuning of multiple network parameters. A slow shift of the threshold
between LTD and LTP, the slow rescaling of all synaptic weights, or a slow regulation of neuronal
parameters are good candidates for these functionalities. Some of these slow mechanisms could be
important only in setting up the network initially or after a strong external perturbation to the
circuit. This view, however, raises an important question: Why do many modern plasticity models
not include built-in RCPs, whereas classic models do?

Why are RCPs missing in many STDP models?

Modern plasticity models try to capture a diversity of experimental data from rate-dependent [45],
voltage-dependent [87] and spike-timing-dependent [68–70] plasticity experiments. One salient fea-
ture captured by most models [33, 61, 63, 65, 93] is the notion of a plasticity threshold which
correlates with postsynaptic voltage, calcium concentration, postsynaptic firing rate, or other neu-
ronal variables related to postsynaptic activation (Fig. 3a). Interestingly, most existing STDP
models, although often explicitly fitted to data, are purely Hebbian and do not include the notion
of a RCPs. If such a rapid mechanisms exist — which is what we argue here — then how can it be
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that existing plasticity models without them can quantitatively capture the data from experiments?
There are presumably three main reasons for this. First, STDP experiments typically manipulate

a single pathway, either by stimulating a presynaptic neuron or a bundle of presynaptic axons.
Sometimes a designated control pathway (i.e. a second presynaptic neuron) is missing, or, if it is
not missing, the effect size in the control pathway is considered as weak. However, from a theoretical
perspective, we expect that heterosynaptic effects caused by stimulation of one presynaptic pathway
are weak when measured at only one “control” synapse; a weak change at individual synapses
could still have a strong accumulated effect over thousands of synapses. Therefore even weak
heterosynaptic plasticity could act as a strong RCP [21, 103, 118].

Second, in an STDP experiment with 60 repetitions of pre-post-pairs, the total activation of
the postsynaptic neuron is still in a reasonable regime. Therefore it is unclear whether the “burst-
detector” for heterosynaptic plasticity would be triggered [21, 103, 118].

Third, experiments typically rely on repeated pre- and postsynaptic activation. Moreover, during
the induction protocol, synaptic efficacy changes are usually not observable. Plasticity models are
thus fitted to pairs of initial and final synaptic strength. However, the unobserved intermediate
synaptic dynamics during a standard LTP induction protocol could be qualitatively very different
(Fig. 8), but are obscured in experiments by measurement artifacts as well as short-term plasticity
riding on top of the induced Hebbian LTP. These differences in the dynamics contain the answers to
questions such as: Is the final synaptic strength stable or would it increase further with additional
pairings? Is there a threshold of number of pairings that needs to be reached for an all or nothing
effect?

Because the detailed internal dynamics of synapses during induction are not known, different
plasticity models make different assumptions about the saturation of weights. Due to the limited
amount of experimental data, it is possible to construct a diversity of different models which are all
consistent with the data. For instance, the Zenke et al. [103] model discussed in this paper is based
on the triplet STDP model, and therefore consistent with existing STDP data, but it includes
additional non-Hebbian RCPs. Although the presence of these added processes is important for
network stability, their overall contribution to simulated STDP protocols is negligible. So, how can
one verify or falsify the existence of RCPs experimentally?

How can we further constrain plasticity models by experiments?

There are multiple ways in which synaptic plasticity models could be constrained better through
additional data. In the past, a large body of research has focused on homosynaptic associative
plasticity, also called Hebbian plasticity, using pairing experiments with various protocols such as
STDP. Here, we argue that heterosynaptic plasticity as well as transmitter-induced plasticity or
similar stabilizing plasticity mechanisms are as important as Hebbian plasticity due to their crucial
role for network stability.
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Heterosynaptic plasticity and heterosynaptic effects mediated through metaplasticity [29, 120,
143] are promising candidates to stabilize Hebbian plasticity models against run-away LTP [21, 32,
103, 118]. While heterosynaptic plasticity has been observed in various experiments [20, 117], a
conclusive picture and data-driven models are still scarce. Is it possible to measure the timescale,
frequency dependence, and weight-dependence of neuron-wide heterosynaptic depression by manip-
ulating the stimulation of the postsynaptic neuron? Does “pure” heterosynaptic plasticity exist in
the absence of presynaptic activity or is a slight activation of the presynaptic pathway always nec-
essary to induce changes [120]? Another important question for the interpretation of heterosynaptic
plasticity is whether it causes mostly synaptic depression similar to LTD or if it rather prevents or
even resets early LTP through depotentiation at the unstimulated pathway [144]. Finally, the role
of heterosynaptic metaplasticity [143] remains largely elusive.

Transmitter-induced plasticity is important in models and might be present in many experiments,
even though it has not been reported as such. Here, we have interpreted transmitter-induced
plasticity as a potentially weak form of long-term potentiation that is caused by presynaptic firing
in the absence of postsynaptic activity. Why is this form of plasticity important? Suppose you
have a network of neurons firing at low activity, so that any given neuron can be considered a
weakly active postsynaptic neuron. Since low activity typically induces LTD, many plastic network
simulations have the tendency to fall silent. To compensate for this theorists have either introduced
lower bounds on synaptic weights or added weak LTP triggered by presynaptic activity [103, 114].
How realistic are these assumptions?

Direct experimental evidence for such terms would, for instance, be the growth of synaptic
efficacy during low activity “pre only” stimulation. Such a term would manifest as a systematic
positive drift of baseline in an experiment and could thus be easily interpreted as an unwanted
instability [145, 146]. From a theoretical standpoint, the importance of such a term — even if only
weak — makes it an interesting target for future studies.

Finally, transmitter-induced plasticity could be replaced by a growth term without explicit presy-
naptic dependence. A plausible candidate for such a mechanism would for instance be spontaneous
spine-growth in the vicinity of a presynaptic axon. However, whether or not these rates would be
on the correct timescale to compensate LTD effects requires further theoretical investigation.

Consolidation of synapses is summarized in the present model by a reference weight w̃ [54,
103]. Simulations predict that synaptic consolidation renders synapses inert against heterosynaptic
plasticity. Intuitively, the measured synaptic weights become “sticky” and are always attracted back
to their momentary stable state, i.e. weak or strong. This prediction requires future experimental
clarification.

The path towards saturation of synaptic weights during a pairing experiment (Fig. 8) is vital
to building better plasticity models. Virtually any information which helps theorists to constrain
how the synaptic weight increases would be helpful. Importantly, this also includes any information

25



about conditions (or experimental protocols) which do not induce plasticity, despite the fact that
either the presynaptic or the postsynaptic neuron or both have been activated.

Conclusion

One of the most striking differences between plasticity models and experimental data concerns
their timescales. Hebbian plasticity can be induced within seconds to minutes [45, 68, 69, 87]. In
simulated network models, a similarly fast form of Hebbian plasticity leads to run-away activity
within seconds, unless Hebbian plasticity is complemented with RCPs. Here, “rapid” means that
these changes need to take effect after seconds or at most a few minutes [32]. This, however, is much
faster than homeostatic plasticity observed in experiments. One of the most extensively studied
forms of homeostasis in experiments is synaptic scaling [1] which proportionally scales synapses up
or down when the network activity is too low or too high respectively. However, even the fastest
known forms of scaling take hours to days to cause measurable changes to synaptic weights (Fig. 1;
[15, 35, 36]).

This apparent difference of timescales between RCPs required for stability in models and exper-
imental results is a challenge for current theories [23, 32, 118, 147]. To reconcile plasticity models
and stability in networks of simulated neurons, we need to reconsider models of Hebbian plasticity
and how they are fitted to data.

In most plasticity induction experiments neither the time course of the manipulated synaptic
state nor the precise changes of other synapses are observable during stimulation. Quantitative
models of synaptic plasticity thus make minimal assumptions about these unobserved temporal
dynamics and generally ignore heterosynaptic effects entirely. In other words, missing experimental
data makes it possible to build different models which all capture the existing experimental data,
but make different assumptions about the unobserved dynamics. Importantly, some of these models
become intrinsically stable [10, 57, 118] or even multistable [23, 103]. In most situations these models
can be interpreted as compound models consisting of Hebbian plasticity and forms of RCPs which
only rely on quantities that are locally known to the synapse, i.e. the pre- postsynaptic activity
as well as its own synaptic weight. Although such local forms of plasticity can solve the problem
of stability at a neuronal level, in practice, most network models require additional fine-tuning
of parameters to achieve plausible activity levels across a network of neurons. This role can be
fulfilled by slow homeostatic mechanisms which act on timescales of hours or days, consistent with
experimental data on homeostatic plasticity.

In summary, several theoretical arguments suggest that Hebbian plasticity is intrinsically stabi-
lized on short timescales by RCPs, likely to be implemented as heterosynaptic plasticity, or network
wide negative feedback mechanisms. Slow forms of homeostatic plasticity, on the other hand, set
the stage for stable learning. This hypothesis will now have to stand the test of time. It will thus be
an important challenge for the coming years to go beyond homosynaptic Hebbian plasticity and to
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gain a more complete understanding of its interactions with a diversity of compensatory processes
across timescales.
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