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S1 Mathematical digression: The notion of a timescale

To formally introduce the notion of a timescale, we consider a linear system defined by the differential
equation

τ
dy

dt
= −(y − ξ) (S1)

where ξ and τ are two fixed positive parameters. The solution y(t) of the differential equation
relaxes exponentially to the value y = ξ, on the timescale τ . Practically speaking that means that
no matter how we initialize y(t) at time t = 0, if we wait for a time 3τ , the difference y(t) − ξ will
have decreased by 95%. The exponential evolution is typical for a linear system. Moreover, the
equation has a nice scaling behavior: If we know the solution for a parameter setting τ = 1, we can
get the solution for the parameter setting τ = 5 by multiplying all times by a factor of five. This is
the reason why we speak of τ as the timescale of the system.

The fact that a constant value of y(t) = ξ for all t is a solution means that ξ is a fixed point of
the system. To check this, remember that the derivative of a constant is zero (so that the left-hand
side of Eq. (S1) vanishes). And for y = ξ the right-hand side is obviously zero, too. Moreover, this
fixed point is stable because from any initial condition, y(t) will converge towards ξ.

Let us now consider the case in which τ is negative. In this case, y(t) = ξ is still a fixed point,
but if we start with a value y(t) > ξ, then y(t) will explode exponentially fast to large positive
values while for an initial value y(t) < ξ it will explode exponentially fast to large negative values.
The timescale of explosion is again given by τ .

However, our intuition for timescales breaks down for nonlinear systems. Therefore, when we
consider a nonlinear system τ dydt = f(y), it does not suffice for τ to be large to be able to talk about
a slow or fast timescale. We have to be specific about the behavior of f in the regime that we are
interested in. The mathematical trick to do this is to look for a fixed point of the equation, that is
a value of y with f(y) = 0. Suppose y = y0 is a fixed point. We then study the derivative df/dy at
y0. Let us denote this derivative by f ′. In the neighborhood of y0 (and only there!) the nonlinear
equation is well approximated by a linear equation τdy/dt = (y− y0) f

′. Division by f ′ brings f ′ to
the other side of the equation and enables us to identify the effective timescale τ̃ = −τ/f ′. If you
are in doubt, compare your result with equation (S1).

Another example of a linear system is a low-pass filter. Suppose we pass our variable y(t)

through a low-pass filter with time constant τd to yield

ȳ(t) =

∫ t

−∞
exp

[
−(t− t′)

τd

]
y(t′) dt′ . (S2)

By taking the derivative on both sides of Eq. (S2), we find that the low-pass filter ȳ is the solution
of a differential equation dȳ(t)/dt = −ȳ(t)/τd + y(t). This equation is similar to equation (S1), if
we replace the constant target value ξ by a time-dependent target y(t)/τd.
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S2 The induction timescale of Hebbian plasticity

Because both learning rules and neurons are typically nonlinear, the mathematical definition of a
timescale for Hebbian plasticity requires the existence of a fixed point. The reason is that for a
nonlinear system we can define a timescale only in the vicinity of a fixed point, as we have seen
above.

Even if a plasticity rule in isolation looks linear, the combination of plasticity with the neuronal
dynamics typically makes the network as a whole nonlinear. Consider for instance a single neuron i
that is driven by N inputs arriving at synapses wij for 1 ≤ j ≤ N . In a rate model, the state of the
postsynaptic neuron is characterized by its firing rate yi = g

(∑N
j=1wijxj

)
where xj is the firing

rate of the presynaptic neuron with index j. The function g denotes the frequency-current relation
of a single neuron and we assume that it is monotonically increasing, i.e., if we increase the input,
the firing rate increases as well. In the theoretical literature g is sometimes called the gain function
of the neuron, hence our choice of letter g.

Let us first study a simple Hebbian learning rule

dwij
dt

= η yi xj . (S3)

Note that this is a special instance within the general framework of Eqs. (1,2) in the main manuscript.
To see this, consider a Hebbian term H(posti,prej) = H(yi, xj) = yi xj , and a1(wij) = η and set
all other terms in Eq. (2) to zero. This learning rule is linear in xj and linear in yi. However, if
we insert yi = g

(∑
j wijxj

)
into the learning rule, the learning dynamics become nonlinear in xj .

Nonlinearity implies that we cannot define a timescale of plasticity, unless we find a fixed point
where dwij/dt vanishes.

Are there fixed points of the dynamics? There is a fixed point if the postsynaptic or the
presynaptic rate is zero. However, if the neuron is embedded in a network, it is reasonable to
assume that several presynaptic neurons including the presynaptic neuron j are active. Unless all
weights wij are zero, the postsynaptic neuron is therefore also active, and the weight wij increases.

The argument can be formalized to show that wij = 0 is an unstable fixed point. If we increase
wij by just a little, the output yi also increases which increases wij even further, which closes the
positive feedback loop. More generally, models of Hebbian plasticity that are useful for memory
formation all have an unstable fixed point. One important role of Rapid Compensatory Processes
(RCPs) in network models with Hebbian plasticity is therefore to create (additional) stable fixed
points for the learning dynamics as we will see later on in this section.

The simple example above only has a trivial fixed point at zero activity (zero weights). Moreover,
it is lacking the notion of long-term depression (LTD). Plausible plasticity models have additional
stationary points defined by the plasticity threshold between long-term potentiation (LTP) and
LTD (Fig. 3a). Inspired by experimental data [1–3], the transition from LTP to LTD depends in
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models on the state of the postsynaptic neuron, e.g., its membrane potential, calcium level, inter
spike interval [4–8]. As a paradigmatic example, which stands for a plethora of different plasticity
rules with a postsynaptic threshold, we consider the following rate-based nonlinear Hebbian rule

dwij
dt

= η xjyi (yi − θ) (S4)

with a positive constant η. Whenever the postsynaptic firing rate yi equals the value of θ, the weight
wij does not change. Thus this learning rule has a fixed point at the threshold yi = θ. For yi larger
than θ the synaptic weights increase which corresponds to the induction of LTP in the model. For
yi smaller than θ the synaptic weights decrease and LTD is induced.

Let us now embed this learning rule in a network. For the sake of simplicity we assume the
gain function to be linear, g

(∑
j wijxj

)
=
∑

j wijxj . Moreover, we assume that (i) all weights wij
have the same value wij = w and (ii) all N neurons in the network fire with the same firing rate
xj = 1/N , so that y = w. Inserting these assumptions into Eq. (S4) yields

dw

dt
= η w (w − θ) (S5)

which characterizes the weight change induced by synaptic plasticity. We now linearize Expres-
sion (S5) at the stationary point w = θ:

dw

dt
≈ η θ (w − θ)

This is a linear differential equation with a solution w(t) that, for w(t) > θ, explodes exponen-
tially fast on the timescale τ = 1

ηθ (cf. discussion of Eq. (S1)). Thus, in this example, w = θ is
an unstable fixed point and the linearization procedure has enabled us to identify the timescale of
plasticity induction. In practical implementations of a plasticity model, the exponential growth of
the synaptic weights wij would stop when they obtain their maximal value wmax. However, if all
synapses onto a postsynaptic neuron, or even all synapses in a neural network sit at their upper
bound, the network cannot function as a memory.

Note that the occurrence of the parameter θ in the timescale τ is a hallmark of the nonlinearity
of the full system. Just like in the well-known Hodgkin-Huxley model where the timescale of the
activation and inactivation variable depends on the voltage, the effective timescale τ of a learning
rule will depend on multiple factors such as the presynaptic activity, the slope of the gain function,
or the threshold θ between LTD and LTP.

Even though τ in the example above is not the same as the induction timescale of long-term
plasticity, in experiments in which only a single presynaptic pathway is stimulated, the two are
related. With our formalism we can also account for the strength of the recurrent feedback that is
received by a neuron embedded into a network. Just repeat the above analysis under the assumption
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that the presynaptic and postsynaptic neurons are mutually connected, of the same type, and fire
at the same rate [9]. Whatever you consider as a reasonable scenario, the timescale τ characterizes
how quickly a neuron or an entire recurrent network can generate positive feedback and is able to
“run away”.

Instead of writing down a differential equation for the weights w, as in Eq. (S5), we could have
written the system in terms of y, too. A formulation in terms of the firing rates y highlights the
fact that we have to think about run-away effects of synapses as being linked to run-away effects
of neuronal activity. Note further, that in realistic neuronal networks the presynaptic activity
fluctuates and is different between one neuron and the next. Fluctuations give rise to a covariance
matrix C = 1

n

∑n
t=1 xi(t)xj(t) which may look complicated at a first glance. However, due to the

symmetry of C, there always exists a basis in which C is diagonal. When working in this basis, the
plasticity equations decouple and take the shape of Eq. (S5) with different values of η.

This analytical formalism is quite general [9] (see Yger and Gilson [10] for a review) and can be
applied to spike-timing-dependent plasticity (STDP), spiking neurons and spiking neural networks.
However, because such systems are often stochastic and usually high-dimensional it can become
intractable to explicitly compute the state of each neuron xi and each synapse wij . However, it is
often possible to consider instead the average change across all synapses

〈
dwij

dt

〉
and activities

〈
dyi
dt

〉
respectively. Under fairly general conditions these averages take the functional form of the simple
rate models above which are low-dimensional and analytically tractable. Despite this enormous
dimensionality reduction from a large spiking neural network with a quantitative STDP model, these
mean field models give surprisingly accurate quantitative predictions about bifurcation parameters,
such as τcrit, at which instability occurs [9].
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