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Abstract

Our brain has the capacity to analyze a visual scene in a split second, to learn
how to play an instrument, and to remember events, faces and concepts.
Neurons underlie all of these diverse functions. Neurons, cells within the
brain that generate and transmit electrical activity, communicate with each
other through chemical synapses. These synaptic connections dynamically
change with experience, a process referred to as synaptic plasticity. These
synaptic changes are thought to be at the core of the brain’s ability to learn
and process the world in sophisticated ways.

Our understanding of the rules of synaptic plasticity remain quite lim-
ited. To enable efficient computations among neurons or to serve as a trace
of memory, synapses must create stable connectivity patterns between neu-
rons. However there remains an insufficient theoretical explanation as to how
stable connectivity patterns can exist in the presence of synaptic plasticity.
What complicates and limits our understanding is that the dynamics of
recurrently connected neurons depend upon their connections, which them-
selves change in response to the network dynamics. The recursive nature
of the problem necessitates that the network connectivity and the synaptic
plasticity be treated as a single compound system. Due to the nonlinear
nature of the problem this quickly becomes analytically challenging. Uti-
lizing network simulations that model the interplay between the network
connectivity and synaptic plasticity can provide insight into this problem.
However, most existing network models that implement biologically rele-
vant forms of plasticity become unstable, developing seizure like activity.
This suggests that these models do not accurately describe the biological
networks, which have no difficulty functioning without succumbing to ex-
ploding network activity.

The instability in these network simulations could originate from the fact
that theoretical studies have, almost exclusively, focused on Hebbian plas-
ticity at excitatory synapses. Hebbian plasticity causes connected neurons
that are active together to increase the connection strength between them.
Biological networks, however, display a large variety of different forms of
synaptic plasticity and homeostatic mechanisms, beyond Hebbian plastic-
ity. Furthermore, inhibitory cells can undergo synaptic plasticity as well.
These diverse forms of plasticity are active at the same time, and our un-
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derstanding of the computational role of most of these synaptic dynamics
remains elusive. This raises the important question as to whether forms of
plasticity that have not been previously considered could – in combination
with Hebbian plasticity – lead to stable network dynamics.

To better understand the stability of neural circuits in the presence of
synaptic plasticity, we explore how different forms of plasticity and home-
ostasis interact with the dynamics of biologically inspired spiking networks.
Specifically we assess which compensatory or homeostatic mechanisms are
required and on what timescale they have to act to be able to stabilize net-
work dynamics in the presence of plausible forms of synaptic plasticity. In
addition we investigate the effect of plasticity at inhibitory synapses and
its role in creating and maintaining stable network dynamics. Finally we
illustrate that by combining multiple forms of plasticity with distinct roles,
a recurrently connected spiking network model self-organizes to distinguish
and extract multiple overlapping external stimuli. Moreover we show that
the network structures remain stable over hours while plasticity is active.
This long-term stability allows the network to function as an associative
memory, since it classifies distorted or partially cued stimuli according to
the previously learned stimuli. During intervals in which no stimulus is
shown the network dynamically remembers the last stimulus as selective
delay activity.

Taken together this work suggest that multiple forms of plasticity and
homeostasis on different timescales have to work together to create stable
connectivity patterns in neuronal networks which enable them to perform
relevant computation.

Key words: spiking neural networks, synaptic plasticity, homeostasis,
Hebbian learning, cell assembly, inhibitory plasticity, heterosynaptic plas-
ticity, STDP, secreted factors, selective delay activity
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Zusammenfassung

Das menschliche Gehirn benötigt lediglich den Bruchteil einer Sekunde um
ein Bild zu analysieren. Anderseits erlaubt es uns ein Instrument spielen
zu lernen oder uns an Ereignisse, Gesichter oder nützliche Konzepte zu er-
innern. Einer der Hauptbestandteile unseres Nervensystems sind Neuronen
die elektrische Signale verstärken und über chemische Synapsen miteinander
austauschen. Diese synaptischen Verbindungen sind veränderbar, ein Prozess
der synaptische Plastizität genannt wird. Es wird vermutet, dass Plastizität
von zentraler Bedeutung für das Langzeitgedächtnis und das erlernen neuer
Fähigkeiten ist.

Bis zum heutigen Tag ist unser Verständnis der zugrundeliegenden Me-
chanismen von synaptischer Plastizität nur sehr rudimentär. Damit Netzwer-
ke von Neuronen Informationen verarbeiten können oder um als Langzeit-
gedächtnis dienen zu können müssen stabile Strukturen in den synaptischen
Verbindungen geschaffen werden. Für das Zustandekommen solcher Verbin-
dungen in ständiger Gegenwart von plastisch veränderbaren Synapsen gibt
es derzeit keine grundlegende Theorie. Erschwert wird die analytische Be-
handlung des Problems aufgrund seiner rekursiven Natur, die erfordert, dass
neuronale Netzwerke und Plastizität als ein einheitliches dynamisches Sys-
tem aufgefasst werden müssen. Da dieses System hochgradig nichtlinear ist,
ist die analytische Betrachtung anspruchsvoll oder oft unmöglich. Hier hel-
fen Netzwerksimulationen teilweise die entstehende Dynamik zu analysieren
und zu verstehen. Jedoch sind die meisten solcher Simulationen instabil und
entwickeln epileptische Aktivität, wie sie in gesunden biologischen Netzwer-
ken nicht beobachtet wird. Daraus lässt sich ableiten, dass die existierenden
Modelle das zugrundeliegende biologische System nicht akkurat genug be-
schreiben.

Die Instabilität in Netzwerksimulationen könnte darin begründet sein,
dass sich bisher existierende Studien fast ausschliesslich mit Hebb’scher
Plastizität and exzitatorischen Synapsen beschäftigt haben. Hebb’sche Plas-
tizität bewirkt, dass die synaptische Verbindung zwischen zwei Neuronen
verstärkt wird, wenn diese zu wiederholtem Male gleichzeitig aktiv sind.

Dementgegen stehen biologische Netzwerke, in denen eine Vielzahl unter-
schiedlicher Formen von Plastizität beobachtet werden. Beispielsweise sind
inhibitorische Synapsen auch plastisch. Daraus ergibt sich die interessan-
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te Frage, ob diese bisher wenig betrachteten Formen der Plastizität, wie
beispielsweise heterosynaptische Plastizität, eine wichtige Rolle beim erler-
nen von stabilen Netzwerkstrukturen zufällt. Hier betrachten wir die Stabi-
lität von biologisch inspirierten neuronalen Netzen mit plastischen Synapsen
und unterschiedlichen homeostatischen Mechanismen. Insbesondere gehen
wir der Frage aufgrund welcher Formen von Homeostasis in der Lage sind
Hebb’sche Plastizität unter Kontrolle zu halten und auf welcher Zeitskala
die Homeostase dafür aktiv sein muss. Darüberhinaus betrachten wir die
Netzwerkeffekte, die sich aus plastischen inhibitorischen Synapsen ergeben
und welche Rolle solchen Formen der synaptischen Plastizität im Sinne der
Netzwerkstabilität zukommen könnten.

Schliesslich zeigen wir in einer abschliessenden Simulationstudie, dass
die Kombination mehrerer unterschiedlicher Formen von Plastizität und Ho-
meostasis ein Netzwerk stabilisieren kann, und es ihm gleichzeitig erlaubt
selbständig zu erlernen und zwischen mehreren überlappenden externen Sti-
muli zu unterscheiden. Die dafür notwendigen Strukturen bleiben über Stun-
den stabil im Netzwerk erhalten und erlauben es auch fehlerhafte Stimuli
oder Bruchstücke derer richtig dem ursprünglichen Stimulus zuzuordnen.
Dafür entstehen im Netzwerk verschiedene dynamische Zustände für jeden
bekannten Stimulus, in denen das Netzwerk verweilt solange es nicht erneut
stimuliert wird. Das Netz arbeitet daher als assoziativer Kurzzeitspeicher.

Zusammenfassend lässt sich sagen, dass die Zusammenarbeit verschie-
dener Formen von Plastizität und Homeostasis entscheidend darüber ist ob
neuronale Netzwerke stabile Verbindungstrukturen erlernen mit denen sie
nützliche Funktionen ausführen können.

Stichwörter: Pulsgekoppelte neuronale Netze, synaptische Plastizität,
Homeostasis, Hebb’sches Lernen, inhibitorische Plastizität , heterosynapti-
sche Plastizität, STDP, sekretierte Wachstumsfaktoren, selektive anhaltende
Aktivität
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Foreword

In my work I am trying understand how neural circuits form, maintain and
recall memories by using learning rules which can accurately describe ex-
perimental data. A driving concept for my work has been the Hebbian cell
assembly (Hebb, 1949), which has become the stereotype of an associative
memory on a neural substrate for many experimentalists and theorists alike.
Because cell assemblies depend on acquired recurrent connectivity, this the-
sis is centered around plausible plasticity models in large recurrent spiking
networks.

Chapter 1 reviews the state of the art in this field at the time when I
started to work on the subject. At the time only few studies had commenced
upon studying realistic plasticity rules in large recurrent neural networks.
Most likely because one quickly faces the problem of network instability
when introducing plasticity into recurrent neural networks. The question of
stability has therefore become a central topic in this thesis.

Chapter 2 deals with analyzing the effect of triplet STDP (Pfister and
Gerstner, 2006) – one of the state of the art plasticity rules – on the activity
in a large and strongly recurrent balanced network. The chapter lays out a
simple mean-field theory that allows to understand the dominant instabili-
ties arising in recurrent spiking networks with plastic synapses. The central
result of this analysis is that physiological forms of spike-timing-dependent
plasticity (STDP) in recurrent networks have to accompanied by compen-
satory mechanisms which react much faster (seconds to minutes) than what
is the generally accepted time domain of homeostatic mechanisms (hours to
days).

This seemingly paradox result served as my initial motivation to be-
come interested in plasticity of inhibitory synapses (Chapter 3) and lately
in heterosynaptic plasticity (Chapter 4).

Chapter 3 summarizes my main results concerning inhibitory synaptic
plasticity (ISP) in recurrent network models. The chapter is special in the
sense that most of the results shown here are published in Vogels et al. (2011)
in a broader context. Although my initial motivation to study inhibitory
synaptic plasticity was driven by the knowledge that a fast compensatory
mechanism is needed for stable plasticity in networks (Chapter 2), I realized
that despite the fact that ISP acts as a powerful stabilizing mechanism
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for the network activity it does not automatically lead to stable weight
dynamics.

Chapter 4 proposes a possible way out of this dilemma by combining
standard triplet STDP with a form of heterosynaptic plasticity. The work
in this chapter combines many of the lessons learned in the previous chapters
and suggests that stable learning of Hebbian cell assemblies is only possible
when different plasticity and homeostatic mechanisms synergetically work
together.

Finally, Chapter 5, describes the technical aspects of my research. To
be able to perform large scale simulations, which have to run over extended
periods of time to capture the different timescales of plasticity and home-
ostasis, I developed the simulation environment Auryn1. The final chapter
presents several performance benchmarks and illustrates that there exists an
intrinsic limit which prevents simulations from running significantly faster
than real-time.

1Auryn is freely available as Open Source at https://github.com/fzenke/auryn.
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Chapter 1

Introduction

Our nervous system serves the sole purpose of controlling our actions and
behavior in the complex and changing environment we live in. To interact
with the external environment our nervous system receives input from sen-
sory organs on the one side and generates motor output on the other side.
The information processing which lies between input and output can range
from fundamental reflexes, such as the eye blink reflex that we are born with,
to highly complex acquired skills such as speaking a language or riding a bi-
cycle. In either case the nervous system receives external input, processes it
and outputs behavior and in most situations, it does so surprisingly quickly.

At the cellular level the nervous system consists of nerve cells or neu-
rons which follow similar functional principles. Neurons, exist in a large
diversity, however, they are all capable of receiving input, to process it and
to readily communicate information fast and reliably over large distances.
In particular neurons allow information flow in one direction. To that end
each neuron has designated input structures called dendrites and an axon
with synaptic terminals which serves as an output. Neurons are both elec-
trically and chemically excitable. Specifically, they posses special proteins
in their cell membranes, called ion pumps, which establish and maintain an
electrical potential between the intracellular and the extracellular medium.
By actively influencing the conductance of the cell membrane, other pro-
teins – ion channels and receptors – control the current flow through the
membrane and can thus affect this potential. Neurons use this property for
signal transmission over long distances. The intricate interplay of opening
and closing dynamics of distinct voltage-gated ion channels allows the gener-
ation and the fast propagation of short stereotypical electrical pulses called
action potentials or spikes. These action potentials travel at high speed, up
to several meters through the axon until they arrive either at a neuromus-
cular junction, where they cause muscle movement, or at a synapse from
where they are communicated to other neurons.

In most cases a synapse consists of three major components. First,
the terminal from the presynaptic axon. Second, a postsynaptic target cell
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Chapter 1. Introduction

and third, a zone of the apposition. Depending on the specific makeup of
the latter, synapses can be classified into two categories. Gap junctions
and chemical synapses. In the case of gap junctions ionic current can flow
directly through the synapse into the postsynaptic neuron and thus achieve
information transmission. At the more abundant chemical synapses, the pre
and postsynaptic neuron are separated by the synaptic cleft. The arrival of a
presynaptic action potential triggers the secretion of a chemical transmitter
compound – a neurotransmitter – into the synaptic cleft. This chemical
diffuses to the postsynaptic cell and binds to specific receptor molecules
which control the opening and closing of ion channels in the membrane of
the postsynaptic cell. Depending on the specifics of the neurotransmitter
and the ion channels, this can either excite or inhibit the firing of action
potentials in the postsynaptic cell.

In the mammalian nervous system most excitatory synapses use gluta-
mate as neurotransmitter, while the chief inhibitory neurotransmitter is γ-
Aminobutyric acid (GABA). There are several different types of ion channels
involved in glutamatergic transmission which includes AMPA (α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic
acid) gated ion channels. Their ion channel opening can cause rapid excita-
tory postsynaptic potentials (EPSPs) with rise times well below 1ms. How-
ever, their temporal effect is short lived and depending on the specifics of
the channel most EPSPs mediated by AMPA receptors decay on a timescale
of 1-20ms. The fast excitatory transmission mediated through AMPA recep-
tors is complemented by the slower mode of transmission of NMDA recep-
tors (NMDAR). The slower opening and closing kinetics of NMDAR have
typical EPSP rise times in the order of ∼ 10ms or longer. They generate
long-lasting postsynaptic excitatory effects which may persist up to several
hundred milliseconds. Moreover the conductance of most NMDA receptors
is strongly dependent on the postsynaptic voltage. When the postsynap-
tic cell not been excited previously by synaptic input, NMDA channels are
generally blocked by magnesium ions. Only when the cell is excited – or
more specifically, depolarized – this block is gradually removed and allows
substantial currents to pass through the channel, making the receptor an
ideal molecular coincidence detector of pre and postsynaptic activation.

The computations that a single neuron can perform are highly limited.
These limitations are presumably overcome in the brain by combining many
neurons in intricately connected networks. An average neuron in the mam-
malian brain forms between 1000 to 10000 connections to other neurons
which amounts to a total of 1014 − 1015 synapses in the human brain (Kan-
del et al., 2000). Since the information content of the human genome is
insufficient to provide a detailed connectivity plan for all neurons, organ-
isms have to provide the algorithmic means to change synaptic connections
as needed to form functional neural circuits. This phenomenon is called
synaptic plasticity and it describes the ability of synapses to change and
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Figure 1.1 – (a) Schematic of an excitatory synaptic connection between neuron A
and neuron B. Neuron B receives excitatory synaptic as well as inhibitory input from
other neurons. (b) Schematic reproduction of findings on spike-timing-dependent
plasticity (STDP) by Zhang et al. (1998). A fixed number of pairings with causal
pre-before-post spike timing trigger a long-lasting increase in synaptic strength,
while acausal post-before-pre timings cause a decease in synaptic strength (left).
Since the changes are long-lasting, they have been termed long-term potentiation
(LTP) and long-term depression (LTD). Right: Schematic of the synaptic strength
over time for a typical of an LTP induction protocol. The actual plasticity induction
protocol is short (indicated by the downward pointing arrow) compared to the
overall time of the experiment. Synaptic changes persist for hours or longer.

consequently modify the neuronal circuit they are part of. Importantly,
synaptic plasticity is maintained throughout adulthood, which is the reason
why it is believed to underlie learning and memory formation in the brain.
To be able to work in concert neurons have to be intricately connected. This
requires the synaptic changes that determine how neural circuits are wired
together to follow some common organizational principles or plasticity rules.
In uncovering these rules lies the key to understanding neural computation
and memory in the brain.

The current understanding of the different plasticity rules is quite lim-
ited. To form neural circuits that compute or serve as a memory, synapses
must create novel connectivity patterns between neurons. This task, how-
ever, is complicated by the fact that single synapses have only limited access
to information about their surrounding world. More specifically, the infor-
mation they can access is confined in space and time. These spatial and
temporal limits are bound to the scales of the chemicals involved in the
plasticity process. Based on these constraints Donald Hebb (Hebb, 1949)
postulated more than 60 years ago a learning rule that strengthens the con-
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Chapter 1. Introduction

nections between co-active neurons. In particular if neuron A repeatedly
takes part in firing neuron B, the synapse between both neurons is strength-
ened (Figure 1.1 (a)). Today the so called forms of Hebbian plasticity are
believed to constitute a central role in learning. Moreover Hebbian plasticity
has since been found almost ubiquitously in the brain (Bliss and Lømo, 1973;
Artola et al., 1990; Markram et al., 1997; Martin et al., 2000; Abbott and
Nelson, 2000; Bi and Poo, 2001; Bliss et al., 2003; Caporale and Dan, 2008;
Lisman, 2003; Sjöström et al., 2008). Despite a constantly growing body of
experimental evidence our understanding of how neural circuits form and
compute remains limited at best.

Most advances have been made in understanding the selective response
of neurons in the early sensory systems to stereotypical stimuli. For instance,
single units in early visual cortex respond preferentially to oriented-bar stim-
uli shown in a particular area of the visual field (Hubel and Wiesel, 1962).
These so called receptive fields are formed during development and it is
widely believed that Hebbian learning underlies their formation. Moreover,
models of Hebbian plasticity have successfully demonstrated that receptive
fields emerge under certain conditions in feed-forward network models (Bi-
enenstock et al., 1982; Oja, 1982; Clopath et al., 2010). The brain, however,
is a highly recurrent network. In fact, most of the synaptic input to a corti-
cal neuron originates from other cortical regions and not from sensory input
(DeFelipe and Fariñas, 1992). As one moves away from early sensory brain
areas, the notion of receptive field becomes increasingly difficult to define. In
particular one finds cells which respond to very abstract, high level stimuli
which in some cases do not even depend on external stimulation (Quiroga
et al., 2005; Gelbard-Sagiv et al., 2008; Li and DiCarlo, 2008). It is tempt-
ing to speculate that such spontaneous activations are the neural correlates
of thought and other types of high level processing in the brain. However,
it remains entirely unclear which connectivity patterns underlie these brain
states and how they emerge through synaptic plasticity.

One hypothesis is that subgroups of neurons in an otherwise randomly
connected network could form groups of strongly connected neurons, or cell
assemblies (Hebb, 1949). Importantly the required assembly structure could
emerge through Hebbian plasticity triggered by the repeated co-activation
of a subset of neurons in an initially näıve network (Figure 1.2 (a)). Such
assemblies are associative because the reactivation of only a handful of neu-
rons could be sufficient to spread neuronal activity throughout the entire
assembly by dint of the strong synaptic connections inside of the assembly.
These Hebbian assemblies have since been thought of as the physiological
equivalent of associative memories. The concept has multiple appealing fea-
tures which seem in agreement with biology. First, the required learning
rule could be entirely local in space in time. Second, a given circuit can
support many many different assemblies to be stored in the same network
(Hopfield, 1982). Third, since memories are stored in a distributed fashion,
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Figure 1.2 – Formation of Hebbian assemblies in random neural networks.
(a) Schematic of the formation of a cell assembly in an initially random network.
The initially random connectivity in the näıve network (left) is reshaped by expe-
rience through Hebbian plasticity to form a cell assembly (right). (b) Schematic
population view of a network with an embedded Hebbian assembly. The popula-
tion of all excitatory cells is represented by the black circle. Similarly excitatory
synapses are summarized by black (and red) arrows. Inhibitory cells and synapses
are depicted in blue. A subset of excitatory cells receives correlated input (red),
which causes them to form strong recurrent excitatory connections through Hebbian
plasticity. (c) Spike raster of a simulation of a spiking network showing run-away
potentiation. The cells in the assembly (100 units at top) become highly active
due to strengthened weights between them. Eventually the rest of the network
destabilizes in run-away potentiation.
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the resulting memory network is fault tolerant to the death of individual
neurons. Finally, neurons partaking in Hebbian assemblies retain their abil-
ity to be highly specialized for the subset of assemblies they are part of, but
at the same time the overall connectivity would appear mostly random to
an external observer who does not know the “code book”, i.e. the identity
of the patterns stored.

Yet there is still little conclusive experimental evidence for the notion
of Hebbian assemblies (Quiroga et al., 2005; Gelbard-Sagiv et al., 2008;
Bathellier et al., 2012; Fuster and Jervey, 1982; Goldman-Rakic, 1995). The
main hindrance is, that it would require simultaneous recordings from pro-
hibitively large numbers of neurons in-vivo. At the same time theoretical
approaches to reproducing the formation of cell assemblies in realistic mod-
els of spiking neural networks have had limited success (Amit and Mongillo,
2003b; Del Giudice et al., 2003).

To test Hebb’s hypothesis of the cell assembly (Hebb, 1949) most the-
oretical studies have focused on creating models with learning rules in the
context of a plausible network model. Here, generally random balanced
network models, which are networks consisting of excitatory and inhibitory
neurons, were used. These models give a natural explanation for the high
trial-by-trial variability observed in cortical circuits and mimic activity con-
ditions similar to the ones observed in biological networks (for details see
Section 1.1.1; van Vreeswijk and Sompolinsky (1996); Brunel (2000); Vogels
et al. (2005)).

Biologically plausible learning rules are generally found in models of
spike-timing-dependent plasticity (STDP; Figure 1.1 (b)) which is the form
of synaptic plasticity ubiquitously found in the brain. STDP has been re-
ported in a variety of different types at excitatory (Markram et al., 1997;
Bi and Poo, 1998; Sjöström et al., 2001; Caporale and Dan, 2008; Sjöström
et al., 2008; Markram et al., 2011) and inhibitory synapses (Woodin et al.,
2003; Haas et al., 2006; Vogels et al., 2013). While today’s state-of-the art
plasticity models can very accurately describe STDP at the cell-to-cell level
(Pfister and Gerstner (2006); Clopath et al. (2010)), the compound systems
of learning rules and recurrent network models result in highly unstable
models (Chapter 2; Zenke et al. (2013)). Although highly constrained mod-
els can reproduce to some extent the formation of cell assemblies (Figure 1.2
(b); Amit and Mongillo (2003b); Del Giudice et al. (2003)), less constrained
and therefore more realistic models mostly succumb to irreversible run-away
potentiation (Figure 1.2 (c)).

Hebbian plasticity is known to be unstable and therefore prone to devel-
oping run-away behavior. The reason for this is that it acts as correlation
detector which further amplifies correlations. Hence, a neural population
which is highly active, gets even more activated through Hebbian plastic-
ity. Eventually this leads to an explosive activity increase (Fig. 1.2 (c)) with
catastrophic effects on the information previously stored in synaptic changes
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1.1. Existing plasticity models in large recurrent network
simulations

(Fusi, 2002). To avoid this behavior Hebbian plasticity has to be constrained
(Miller and MacKay, 1994). In a model, this can be enforced algorithmi-
cally (von der Malsburg, 1973). In biological networks, however, it is less
clear which mechanisms constrain plasticity. Although a large variety of
different compensatory or homeostatic mechanisms is present in real neural
networks (Turrigiano, 1999, 2011; Davis, 2013, 2006; Marder and Goaillard,
2006) their individual contribution to network stability remains elusive at
best. Importantly, not every plausible form of homeostasis guarantees sta-
ble network dynamics. Since explosive run-away potentation can occur very
rapidly in a plastic network (cf. Figure 1.2 (c)), Hebbian plasticity needs
to be compensated by an equally rapid mechanism (Chapter 2; Zenke et al.
(2013)). However, most known forms of homeostasis are slow and act on
timescales of hours or days. Understanding this problem analytically and
in simulations and ultimately suggesting possible ways out is one of the
quintessential questions addressed in this thesis.

1.1 Existing plasticity models in large recurrent
network simulations

The remainder of this chapter is dedicated to describing the state-of-the-art
in the field at the beginning of this thesis project. In particular this puts
the focus on plasticity models in large recurrent network simulations. Since
most of these models build on top of models of balanced networks, their basic
terminology will be introduced first (Section 1.1.1). This will be followed by
a brief discussion of spontaneous activity and the neural background state
in balanced network models (Section 1.1.2) which will entail a more detailed
discussion of common sources of noise and stochasticity. Importantly we
will distinguish sources of noise that arise naturally in balanced network
models and noise that is added algorithmically to the simulation as external
input. Finally we will turn to reviewing work on plasticity in large recurrent
spiking networks which was published at the time the work presented the
remaining chapters of this thesis was started (Section 1.2).

1.1.1 Balanced networks

Most computational studies have focused on balanced networks because they
closely resemble two important facts from living systems. First, the circuits
of the brain are constantly active and even in the absence of a stimulus, corti-
cal neurons spike in response to recurrent input they receive from other corti-
cal neurons (DeFelipe and Fariñas, 1992). Second, this so called background
activity is highly asynchronous and irregular (AI; Section 1.1.2; Burns and
Webb (1976)). Furthermore the observed high variability is not simply an
effect of neuronal noise, because neuronal responses can be evoked and pre-
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dicted reliably (Mainen and Sejnowski, 1995; Badel et al., 2008; Mensi et al.,
2012).

In the framework of balanced networks the above observations are a re-
sult of an intricate balance between excitatory and inhibitory synaptic cur-
rents, which similar to experimental observations (Wehr and Zador, 2003;
Okun and Lampl, 2008), cancel each other almost completely. Under these
conditions network activity exhibits chaos (van Vreeswijk and Sompolinsky,
1996) which provides an elegant explanation for the asynchronous and ir-
regular activity observed in biological networks. Apart from asynchronous
irregular (AI) activity, recurrent networks of spiking neurons also exhibit,
depending on the choice of parameters, several other mostly pathological
dynamical states (Brunel, 2000; Vogels et al., 2005).

In many model studies the underlying synaptic connectivity of the bal-
anced network is chosen randomly to make minimal model assumptions.
By adding structure to random networks, by manually changing synaptic
weights (Amit and Brunel, 1997b) or through the addition or removal of
connections (Litwin-Kumar and Doiron, 2012), balanced networks have been
demonstrated to perform memory recall from Hebbian assemblies (Amit and
Brunel, 1997b; Brunel and Wang, 2001; Renart et al., 2007; Mongillo et al.,
2008; Hansel and Mato, 2013; Vogels et al., 2011), information transmission
(Vogels and Abbott, 2005; Kumar et al., 2008a) and gating (Vogels, 2007)
as well as simple logic computations (Vogels and Abbott, 2005).

Since balanced networks are sensitive to synaptic weight changes (Brunel,
2000), one fundamental requirement to plasticity models arises directly: Any
synaptic plasticity rule deployed to a balanced network needs to be compat-
ible with the ongoing background activity. That is, the learning rule is
required to at least maintain the present dynamical state of the network, to
be considered as a credible and plausible plasticity model.

1.1.2 Background activity

About the role of background activity one can only speculate. Sources
of stochasticity and neural variability are manifold (Hubbard et al., 1967;
Calvin and Stevens, 1968; Rolls and Deco, 2010). Neurons and synapses
in the brain are intrinsically noisy and to a certain degree unreliable. It is
common practice to model this stochasticity, by providing noise as an ex-
ternal input to the otherwise deterministic network (Morrison et al., 2007;
Kunkel et al., 2011; Vogels and Abbott, 2005; Vogels et al., 2011; Vogels and
Abbott, 2009; Litwin-Kumar and Doiron, 2012; Amit and Brunel, 1997a;
Kumar et al., 2008b; El Boustani et al., 2012). While real neural circuits
exhibit activity even in the absence of external input, most balanced net-
work model do not. Rather a network baseline activity, which resembles
neuronal background activity, is ensured by providing noisy external input.

However, it is also known that completely deterministic balanced net-
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works can self-sustain AI activity even in the absence of any external input
(Vogels and Abbott, 2005; Kumar et al., 2008a). The initial stochasticity in
such networks is frozen in the random and sparse connectivity matrix like
a random seed. The resulting activity resembles stochastic firing and hence
can be seen as an intrinsic source of noise (van Vreeswijk and Sompolinsky,
1996; Fusi, 2002). This means that balanced networks have the inherent
capacity to generate stochasticity. Although the emerging background ac-
tivity from both approaches might look very similar, treating them the same
would probably be an oversimplification.

For clarity we will distinguish between simulations with “high noise”,
meaning networks that receive substantial stochastic external input or have
some form of stochasticity at the neuronal level. We will use the term “low
noise” to describe networks with a high fidelity at the neuronal level and
little external input. Since for the latter case the networks need to sustain
healthy background activity, these are essentially large random balanced
networks. When considering plasticity in recurrent networks this distinction
is important. In the first case the background state is practically given.
In the second case (low noise) one takes a more global viewpoint. Here
plasticity has to maintain and ideally also achieve background activity.

For both cases it therefore interesting to ask how plasticity and sponta-
neous activity interact. Spontaneous activity in balanced networks alone is
an ongoing field of study (Marre et al., 2009). Despite the fact that corre-
lations in asynchronous irregular activity are low, they still prevail (Renart
et al., 2010), and thus affect synaptic plasticity. The potential implications
of this are unclear, because it could cause structure to arise spontaneously.

There are several options to distinguish between high and low noise cases.
Most network simulations include deterministic neuron models, synapses
and learning rules. Stochasticity enters only via external input and thus it
is often sufficient to weight the amount of recurrent (and therefore deter-
ministic) drive against the amount of external input (noise). In a scenario
where postsynaptic potentials are all of roughly the same amplitude, a good
criterion is the ratio between the number of spikes having their origin within
the network and the number of “external spikes” – if the number of internal
spikes is larger, the network can be categorized as strongly recurrent which
translates into “low noise” in our terminology. Vice versa, for a smaller num-
ber of internal spikes the network is mostly driven externally and therefore
categorized as “high noise”.

1.2 Plasticity models in high noise networks

High noise networks mostly take the role of a sub-network that is thought
to be part of a larger network, modeled mostly as stochastic process, which
provides the necessary input to maintain background activity. This makes
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them useful to investigate plastic changes to the connectivity matrix without
taking too much care about how this new connectivity affects the network
dynamics in return. Networks of this kind are generally not balanced net-
works in the traditional sense as they do not even require inhibitory cells to
function. Furthermore they do not necessarily have to be large either since
findings from small networks can, assuming stability, easily be generalized
to large networks. They can therefore be simulated efficiently over extended
periods of time.

Plasticity studies for spiking networks focus primarily on spike timing
dependent plasticity (STDP; Markram et al. (1997); Bi and Poo (1998);
Sjöström et al. (2001); Caporale and Dan (2008); Sjöström et al. (2008)).
STDP in recurrent networks was first studied extensively for connected pools
of stochastic linear Poisson neurons (Gilson et al., 2009b,c,a, 2010). Other
studies were performed on networks with more deterministic neuron models,
driven by a continuous stream of external Poisson spike trains (Bush et al.,
2010; Clopath et al., 2010). All these studies have in common that they
make statements about the emergent weight structure, but not about the
effect of the modified weights on the network dynamics.

Whenever dynamical effects of the plastic changes are to be studied,
a strong form of recurrence is required. For small networks this is usu-
ally achieved by using postsynaptic potentials that are substantially larger
than those observed in-vivo. Such an approach was used to point out a
novel potential role of STDP in networks (Lubenov and Siapas, 2008). Here
the authors show that Hebbian STDP in conjunction with significant con-
nection delays can stably drive a recurrent network to the border between
synchronous irregular and asynchronous irregular activity. In contrast to
that, anti-Hebbian STDP always causes correlated and highly synchronous
activity.

There has been another study with strong postsynaptic currents (Szatmáry
and Izhikevich, 2010), where the authors present a working memory model
based on so called polychronous groups (Izhikevich, 2006). The 1, 000 cell
model is able to learn and recall such groups on-line. However, the network
model relies on STDP, a novel form of spike timing dependent short term
plasticity and a switch-like hysteresis of the NMDA controlled postsynaptic
current, whereas background activity is largely achieved through noise.

1.3 Plasticity in large networks

An average neuron in the brain receives between 1000 to 10000 synaptic
contacts from other neurons. To approximate these numbers a realistic
network simulation would need at least as many neurons. Moreover, since
real neurons are not connected in an all-to-all manner, the neuron num-
ber would even have to be larger (in the order of hundreds of thousands
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neurons). Simulating such large networks becomes technically difficult and
computationally expensive. However, for plastic networks, a high compu-
tational cost is orthogonal to another important requirement, which is that
plastic networks generally need to be simulated on the extended timescales
of plasticity (up to days) to yield useful insights (Chapter 5).

Most simulation studies of plastic networks therefore compromise on the
size of network models. They are generally large enough to gain the ability
to exhibit chaotic AI activity (despite being very deterministic: low noise),
but small enough to be computationally tractable. Although the boundary
is quite fuzzy one can state that large networks begin at some 1, 000 cells,
while being only upper-bounded by computational constraints. The current
state-of-the-art lies at around a few hundred thousand cells (Hoang et al.,
2013; Ananthanarayanan et al., 2009; Helias et al., 2012) in modular net-
works which consist of modules of random networks. Each random network
consists of simplified integrate-and-fire neurons which represent a crude ap-
proximation to real neurons with complicated morphologies. While other
modeling attempts which use more realistic neuron models as well as exper-
imentally observed synaptic connection probabilities are currently underway
(Markram, 2006) it is still unclear in how far these models will incorporate
synaptic plasticity.

According to above definition of large plastic network simulations, one
of the first studies of plasticity in a recurrent network model was performed
by Amit and Mongillo (2003b). In this study the authors demonstrate how
a Hebbian form of spike-triggered plasticity (Fusi et al., 2000) leads to re-
structuring of synaptic weights which gives rise to multi-stability in the
network dynamics. In such networks multiple Hebbian assemblies compete
to activate at elevated firing rates. This mechanisms is commonly thought
to be the neural correlate of working memory. Amit and Brunel (1997a)
had previously demonstrated this behavior in network models with static
synapses (as opposed to plastic synapses), and shown that it relies on strong
recurrent feedback.

Although Amit and Mongillo (2003b) successfully demonstrate that learn-
ing of such working memory modules is in principle possible, they also de-
scribe a range of difficulties that arise when bringing Hebbian plasticity into
a recurrent network model (see Del Giudice et al. (2003) for a review).

The main problem of Hebbian forms of plasticity in models is that they
are unstable, a fact already appreciated in simple feed-forward networks
(Oja, 1982; Bienenstock et al., 1982; Miller and MacKay, 1994). In recurrent
networks the effect is largely amplified because their global activity state
typically has a strong dependence on a well tuned balance between excitation
and inhibition (Brunel, 2000; Vogels et al., 2005). Even small changes to
the overall excitation can disrupt this balance and dramatically change the
global network activity. The resulting increase in spiking correlations and
overall high activity typically lead to catastrophic memory loss (Fusi, 2002).
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While Amit and Mongillo (2003b) used a spike-based plasticity rule
which qualitatively captures rate based induction protocols and in some
cases certain aspects of STDP (Fusi et al., 2000) the focus of later stud-
ies shifted towards models designed to quantitatively describe spike-timing-
dependent plasticity (STDP; Song et al. (2000); Senn et al. (2001); Pfister
and Gerstner (2006); Clopath et al. (2010); van Rossum et al. (2000)). STDP
is an experimentally observed form of long-term plasticity which has first
been observed in slice in-vitro preparations (Markram et al., 1997; Bi and
Poo, 1998; Sjöström et al., 2001; Caporale and Dan, 2008; Sjöström et al.,
2008) and later also in-vivo experiments (Gambino and Holtmaat, 2012;
Pawlak et al., 2013). The existing models of STDP can be coarsely clas-
sified in multiplicative models in multiplicative STDP, in which the weight
update has an explicit multiplicative dependence on the current synaptic
weight, and additive STDP models in which this is not the case.

1.3.1 Multiplicative STDP

Probably the first thorough study of multiplicative STDP in a large balanced
network of ∼ 105 neurons was undertaken by Morrison et al. (2007). In this
particular network only approximately every fourth spike evoked synaptic
potential experienced by a neuron in the network was caused by an external
spike . We can therefore think of it as a strongly recurrent network with
low noise. Here the authors approach the question whether spontaneous
background activity alone can create structure in the synaptic weights and
whether or not this structure is stable. The learning rule used in the study
incorporates a multiplicative weight dependence, that fits experimental data.
The authors found that the network shows stable asynchronous irregular
activity on long timescales (hundreds of seconds) with a stable unimodal
weight distribution. However, despite the fact that the weight distribution
is found to be stable, single synapses show the opposite behavior. The
authors study the lifespan of strong synapses (i.e. the time a strong synapse
remains a strong synapse during ongoing activity) in their simulation and
find that it is rather short (∼ 200 s). Thus, synaptic weights wander around
rather freely in the unimodal weight distribution and the network forgets
quickly. It has been shown recently that the occurrence of unimodal weight
distributions and the short memory retention time can be linked directly to
multiplicative learning rules (Billings and van Rossum, 2009).

In the same publication Morrison et al. (2007) study the network’s re-
sponse to synchronous external stimulation of a sub-population within the
network. They illustrate that although the network initially reacts very
moderately to external stimulation, at a given point in time this behavior
changes drastically. The whole network suddenly destabilizes to an epileptic
state of activity. This study was later generalized by using a similar net-
work and the same learning rule by Kunkel et al. (2011). Here the authors

14



1.3. Plasticity in large networks

study the effect of synchronous stimulation of sub-populations and whether
it supports the development of syn-fire chains (Gewaltig et al., 2001b; Ku-
mar et al., 2008a), embedded feed-forward structures which propagate a
volley of synchronized spiking activity through a recurrent network. The
authors show analytically and numerically that feed-forward structures can-
not stably propagate under the STDP rule they use. Either the stimulated
sub-population is too small and the synchronous stimulus does not prop-
agate at all – or it is too large and synchronization grows and eventually
recruits the whole network. This illustrates that although the network ex-
hibits stable spontaneous activity, external stimulation can still irreversibly
compromise stability.

1.3.2 Additive STDP

Additive learning rules do not share properties of short memory retention
times and a unimodal weight distribution (Billings and van Rossum, 2009).
However, thorough studies on additive STDP in large recurrent networks
are rare. Being unaware of the current weight value, additive STDP is free
to respond to whatever correlation structure it is exposed to. Therefore
additive rules in particular are prone to develop weight drift (Gerstner and
Kistler, 2002b) and run-away behavior.

One of the few studies of additive STDP in a large network was under-
taken to explore synaptic pruning (Iglesias et al., 2005). The authors report
a bimodal steady-state weight distribution with maxima at zero (pruned)
and the maximum allowed synaptic value. This is the stereotypical signa-
ture of purely additive STDP (Billings and van Rossum, 2009). However,
since the authors do not give details on the network dynamics it is hard to
judge how the pruning actually proceeds.

One novel approach to additive STDP is taken by El Boustani et al.
(2012). Here the authors present a new phenomenological meta-plastic
STDP rule, capable of explaining a large body of experimental results. Sim-
ilar to earlier plasticity models their model relies on rectifying plasticity
thresholds (Clopath et al., 2008). However in this study these thresholds
can move. In dependence of the synaptic history the threshold terms adapt
and thus limit the amount of long-term potentiation (LTP) to the benefit of
long-term depression (LTD) or vice versa. Eventually this can lead to a sta-
ble equilibrium where synapses are still plastic, but run-away potentiation is
ruled out. The authors illustrate this stabilizing effect of their learning rule
in a network of about 5000 cells. Finally they report long memory retention
times, a desirable feature for memory and hallmark of additive STDP.

15



Chapter 1. Introduction

1.3.3 Inhibitory Plasticity

All models mentioned so far exclusively cover plasticity at the excitatory
synapses. However, as shown in this thesis (Chapter 3; Vogels et al. (2011)),
plasticity at inhibitory synapses provides a powerful mechanism in estab-
lishing excitatory and inhibitory current balance at the single neuron level
in feed-forward circuits and recurrent networks. Here the authors use a
symmetric Hebbian STDP rule, in which co-occurring pre and postsynaptic
spikes cause LTP at inhibitory synapses, irrespectively of their temporal or-
der. In addition there is a non-Hebbian component that depresses synapses
if there is presynaptic spiking only. The authors show that the learning rule
they propose establishes and maintains the balance of excitation and inhi-
bition for a broad range of scenarios in networks consisting of up to 250,000
neurons. In particular, the learning rule is capable of self-tuning a recur-
rent network to the AI activity regime. Furthermore it is able to restore
the balance when disrupted. This is demonstrated by a sudden substantial
change of the excitatory weight matrix that creates two Hebbian cell assem-
blies. Hereupon the inhibitory plasticity rule quickly restores the balance
and silences the memories, which can later be recalled by dint of a partial
external stimulus.

1.4 Summary and Conclusion

While many biologically plausible plasticity models in feed-forward networks
have been proven capable of explaining experimentally observed features in
early sensory systems (Bienenstock et al., 1982; Clopath et al., 2010; Pfister
and Gerstner, 2006), the deployment of plasticity rules to recurrent and in
particular balanced networks has had limited success. Memory formation
and the role of plasticity in more profound domains of cortical processing
remains in large parts an enigma.

To stably maintain a memory trace in a network in which it has little
overall effect on the network dynamics already poses a challenging problem
because old memories are quickly overwritten by new ones (Fusi, 2002; Fusi
et al., 2005). However, as soon as a single memory trace in a network
becomes strong enough to be actively recalled through a change in the overall
network dynamics Hebbian plasticity amplifies this memory further. This
run-away effect generally overwrites other memories in the network. This
problem can be seen as yet another plasticity-stability dilemma (Fusi, 2002),
in which stability now refers to network-stability as opposed to the stability
of the synaptic memory trace.

Some models – multiplicative STDP in particular – have had limited
success regarding stability in very large balanced networks. However, they
perform rather poorly at retaining synaptic structures once they are formed.
On the other hand the question of memory retention could not even be
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1.4. Summary and Conclusion

addressed in large networks with additive STDP since stability issues are
generally devastating.

To understand how stable connectivity patterns can emerge in stable net-
works through synaptic plasticity is left open as one of the central questions
which will be addressed in this thesis.
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Abstract

Hebbian changes of excitatory synapses are driven by and further enhance
correlations between pre- and postsynaptic activities. Hence, Hebbian plas-
ticity forms a positive feedback loop that can lead to instability in simu-
lated neural networks. To keep activity at healthy, low levels, plasticity
must therefore incorporate homeostatic control mechanisms. We find in
numerical simulations of recurrent networks with a realistic triplet-based
spike-timing-dependent plasticity rule (triplet STDP) that homeostasis has
to detect rate changes on a timescale of seconds to minutes to keep the ac-
tivity stable. We confirm this result in a generic mean-field formulation of
network activity and homeostatic plasticity. Our results strongly suggest
the existence of a homeostatic regulatory mechanism that reacts to firing
rate changes on the order of seconds to minutes.
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Chapter 2. Plasticity needs rapid homeostasis

Author summary

Learning and memory in the brain are thought to be mediated through
Hebbian plasticity. When a group of neurons is repetitively active together,
their connections get strengthened. This can cause co-activation even in
the absence of the stimulus that triggered the change. To avoid run-away
behavior it is important to prevent neurons from forming excessively strong
connections. This is achieved by regulatory homeostatic mechanisms that
constrain the overall activity. Here we study the stability of background ac-
tivity in a recurrent network model with a plausible Hebbian learning rule
and homeostasis. We find that the activity in our model is unstable unless
homeostasis reacts to rate changes on a timescale of minutes or faster. Since
this timescale is incompatible with most known forms of homeostasis, this
implies the existence of a previously unknown, rapid homeostatic regula-
tory mechanism capable of either gating the rate of plasticity, or affecting
synaptic efficacies otherwise on a short timescale.
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2.1. Introduction

2.1 Introduction

The awake cortex is constantly active, even in the absence of external inputs.
This baseline activity, commonly referred to as the “background state”, is
characterized by low synchrony at the population level and highly irregular
firing of single neurons. While the direct implications of the background
state are presently unknown, several neurological disorders such as Parkin-
son’s disease, epilepsy or schizophrenia have been linked to various disrup-
tions thereof (Filion and Tremblay, 1991; Zhang and Kaltenbach, 1998; Mc-
Cormick and Contreras, 2001; Spencer et al., 2003; Uhlhaas and Singer,
2006). Theoretically, the background state is currently understood as the
asynchronous and irregular (AI) firing regime resulting from a dynamic bal-
ance of excitation and inhibition in recurrent neural networks (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000; Vogels et al., 2005; Renart et al.,
2010). Balanced networks exhibit low activity and small mean pairwise cor-
relations (Brunel, 2000; Renart et al., 2010). However, even small changes
in the amount of excitation can disrupt the background state (Brunel, 2000;
Kumar et al., 2008b). Changes in excitation can arise from Hebbian plas-
ticity of excitatory synapses: Subsets of jointly active neurons form strong
connections with each other which is thought to be the neural substrate of
memory (Hebb, 1949). However, Hebbian plasticity has the unwanted side
effect of further increasing the excitatory synaptic drive into cells that are
already active. The emergent positive feedback loop renders this form of
plasticity unstable and makes it hard to reconcile with the stability of the
background state (Morrison et al., 2007).

To stabilize neuronal activity, homeostatic control mechanisms have been
proposed theoretically (von der Malsburg, 1973; Oja, 1982; Bienenstock et al.,
1982; Miller and MacKay, 1994; Del Giudice et al., 2003; Lazar et al., 2009;
Clopath et al., 2010) and various forms have indeed been found experimen-
tally (Abraham and Bear, 1996; Turrigiano et al., 1998; Abraham, 2008).
The term homeostasis comprises any compensatory mechanism that sta-
bilizes neural firing rates in the face of plasticity induced changes. This
includes compensatory changes in the overall synaptic drive (e.g. synaptic
scaling (Turrigiano et al., 1998)), the neuronal excitability (intrinsic plastic-
ity (Desai, 2003)) or changes to the plasticity rules themselves (i.e. meta-
plasticity (Abraham and Bear, 1996)). Common to all experimentally found
homeostatic mechanisms is their relatively slow response compared to plas-
ticity. While synaptic weights can change on the timescale of seconds to
minutes (Markram et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001),
noticeable changes caused by homeostasis generally take hours or even days
(Turrigiano et al., 1998; Turrigiano, 1999; Turrigiano and Nelson, 2004; Watt
and Desai, 2010). This is thought to be crucial since it allows neurons to
detect their average firing rate by integrating over long times. While fluc-
tuations on short timescales cause Hebbian learning and alter synapses in
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Chapter 2. Plasticity needs rapid homeostasis

a specific way to store information, at longer timescales homeostasis causes
non-specific changes to maintain stability (Desai, 2003). The required home-
ostatic rate detector acts as a low-pass filter and therefore induces a time
lag between the rate estimate and the true value of neuronal activity. As
a result, homeostatic responses based on this detector become inert to sud-
den changes. The longer the filter time constant is, the more sluggish the
homeostatic response becomes.

Here we formalize the link between stability of network activity and the
timescales involved in homeostasis in the presence of Hebbian plasticity.
We first study the stability of the background state during long episodes of
ongoing plasticity in direct numerical simulations of large balanced networks
with a metaplastic triplet STDP rule (Pfister and Gerstner, 2006) in which
the timescale of homeostasis is equal to the one of the rate detector. This
allows us to determine the critical timescale beyond which stability is lost.
In a second step we reduce the system to a generic two-dimensional mean-
field model amenable to analytical considerations. Both the numerical and
the analytical approach show that homeostasis has to react to rate changes
on a timescale of seconds to minutes. We then show analytically and in
simulations that these stability requirements are not specific to metaplastic
triplet STDP, but generalize to the case of triplet STDP in conjunction with
synaptic scaling.

In summary we show that the stability of the background state requires
the ratio between the timescales of homeostasis and plasticity to be smaller
than a critical value τ crit which is determined by the network properties. For
realistic network and plasticity parameters this requires the homeostatic
timescale to be short, meaning that homeostasis has to react quickly to
changes in the neuronal firing rate (on the order of seconds to minutes).
Our results suggest that plasticity must either be gated rapidly by a third
factor, or be accompanied by a yet unknown homeostatic control mechanism
that reacts on a short timescale.

2.2 Results

In the following we first discuss our results obtained from simulating spiking
neural networks in the balanced state with a Hebbian learning rule subject to
a plausible learning rate. In the beginning we focus on a metaplastic mech-
anism that regulates the amount of synaptic long term depression (LTD)
homeostatically. By systematically varying the time constant of the home-
ostatic rate detector, we find that stability of the background state requires
homeostasis to act on a timescale of minutes. We then strive to understand
the underlying mechanism of the instability from a generic mean field model,
which we use to analytically confirm the critical time constant found in the
spiking network simulations. Finally, to explore the generality of this mean
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Figure 2.1 – The balanced network model. (A) Schematic of the network
model. Recurrent synapses in the population of excitatory neurons (*) are subject
to the homeostatic triplet STDP rule. (B) Typical magnitude and time course
of a single excitatory postsynaptic potential from rest. (C) Membrane potential
trace of a cell during background activity. (D) Histogram of single neuron firing
rates (blue) and coefficient of variation (CV ISI, red) across neurons as well as the
ISI distribution of all neurons (yellow) of the network during background activity.
Arrowheads indicate mean values.

field approach, we apply the analysis to two variations of the triplet learn-
ing rule. First, we add a slow weight decay to metaplastic triplet STDP
and second we switch from homeostatic metaplasticity to synaptic scaling
in combination with triplet STDP. In both cases we confirm analytically and
in simulations that a fast rate detector is required to assure stability.

2.2.1 Simulation results

To study the stability of the background state in balanced networks with
plastic excitatory-to-excitatory (EE) synapses we simulate networks of 25000
randomly connected integrate-and-fire neurons (Fig. 2.1 (A)). Prior to any
synaptic modification by plasticity, we set the network to the balanced
state in which membrane potentials exhibit large sub-threshold fluctuations
(Fig. 2.1 (C)), giving rise to irregular activity at low rates (≈ 3 Hz) and asyn-
chronous firing at the population level (Fig. 2.1 (D)). In our model more than
90% of the input to each neuron comes from within the network, thus closely
resembling conditions found in cortex (DeFelipe and Fariñas, 1992).

Plasticity of all recurrent EE synapses is modeled as an additive triplet
STDP rule (see Pfister and Gerstner (2006) and Methods) which accurately
describes experimental data from visual cortex (Sjöström et al., 2001; Pfister
and Gerstner, 2006). In this metaplastic triplet STDP rule the amount of
LTD is chosen such that LTP and LTD cancel on average, when the pre- and

23



Chapter 2. Plasticity needs rapid homeostasis

postsynaptic neurons fire with Poisson statistics at rate κ = 3 Hz. Therefore,
under the assumption of low spike-spike correlations and irregular firing,
κ becomes a fixed point of the network dynamics (see (Hennequin et al.,
2010) and Methods). We begin with a fixed learning rate η = 6.25, which is
chosen as a compromise between biological plausibility and computational
feasibility (Methods). To go towards the fixed point, all neurons constantly
estimate their firing rate as the moving average ν̄ with exponential decay
constant τ , given by

ν̄i(t) =
1

τ

∑
k|tki<t

exp

(
− t− t

k
i

τ

)
(2.1)

where tki corresponds to the k-th firing time of neuron i (see also Methods,
Eq. (2.19)). If the rate estimate ν̄i of the postsynaptic neuron i lies above
(below) κ, homeostasis increases (decreases) the LTD amplitude. The home-
ostatic time constant τ is the only free parameter of our model.

We then explore systematically for how a particular choice of τ affects
the stability of the background state in the network. To allow the moving
averages to settle, we run the network for an initial period of duration 3τ ,
during which synaptic updates are not carried out. After that, plasticity is
switched on. To check whether the network dynamics remain stable, simula-
tions are run for 24 h of biological time during which we constantly monitor
the evolution of the population firing rate (Fig. 2.2 (A)). The network is
considered unstable if the mean population firing rate either drops to zero
or increases above 60 Hz which happens when run-away potentiation occurs
(Fig. 2.2 (B)). By systematically varying the time constant τ in 1 s steps, we
find that for the background state to remain stable (Fig. 2.2 (C)), τ must
be shorter than some critical value τ crit ≈ 25 s. Moreover, we find a sharp
transition to instability when τ is increased beyond τ crit. For τ < 3 s the
network has a tendency to fall silent (Fig. 2.2 (A), black line).

During stable simulation runs (3 s < τ < 25 s), some synapses grow
from their initial value w0 up to the maximum allowed value wmax, while
the rest of the synapses decay to zero. The resulting bimodal distribution of
synaptic efficacies (Fig. 2.2 (F)) remains stable until the end of the run. This
is a known phenomenon for purely additive learning rules (Toyoizumi et al.,
2007; Billings and van Rossum, 2009) and we will see later that unimodal
weight distributions arise by the inclusion of a weight decay or by choosing
synaptic scaling as the homeostatic mechanism (van Rossum et al., 2000).

Despite the qualitative change in the weight distribution, the inter-spike-
interval (ISI) distribution remains largely unaffected, while the coefficient
of variation of the ISI distribution (CV ISI) is shifted to slightly higher
values (Fig. 2.2 (D)). However, we noted that the single-neuron average firing
rates, which are widely spread out initially, are at the end clustered slightly
above the homeostatic target rate of (κ = 3 Hz) with a weak dependence
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Figure 2.2 – Network stability during ongoing synaptic plasticity depends
crucially on the homeostatic time constant. (A) Temporal evolution of the
average firing rate in the excitatory population for different homeostatic time con-
stants τ . Explosion of firing rate indicated by dashed lines. Curves for τ = 3 s (dark
blue), τ = 10 s (light blue), and τ = 24 s (turquoise) overlap on the interval from 2 h
to 24 h indicating stability. With τ = 2 s (black) we show one of the cases with very
short τ where the activity spontaneously dies. (B) Spike raster of 200 randomly
selected excitatory neurons. The last two seconds are shown before the network ac-
tivity destabilizes (τ = 50 s). (C) For τ = 20s, the activity stays asynchronous and
irregular even after 24 h of simulated time. (D) Firing statistics in a stable network
(τ = 15s) measured after 24 h of simulated time. Histogram of single neuron firing
rates (blue) and coefficient of variation (CV ISI, red) across neurons and the ISI
distribution of all neurons (yellow). Arrowheads indicate mean values. Black lines
represent the corresponding statistics prior to any synaptic modifications (copied
from Fig. 2.1). (E) Population firing rate for stable simulation runs at t = 24h as
a function of the homeostatic time constant. The dashed line indicates the target
firing rate κ. (F) Evolution of the synaptic weight distribution during the first 8
hours of synaptic plasticity (τ = 15 s).
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on the actual value of τ (Fig. 2.2 (E)). This behavior is characteristic for
homeostatic firing rate control in single cells.

We conclude that metaplastic triplet STDP with a homeostatic mecha-
nism as presented here can lead to stable dynamics in models of balanced
networks exhibiting asynchronous irregular background activity. However,
the timescale τ of the homeostatic mechanism critically determines stability.
It has to be on the order of seconds to minutes and therefore comparable
to the timescale of plasticity itself (here τw

η = 476 s). This finding is in
contrast to most known homeostatic mechanisms that have experimentally
been found to act on effective timescales of hours or days (Abraham and
Bear, 1996; Turrigiano and Nelson, 2000; Turrigiano, 2008; Watt and Desai,
2010).

2.2.2 Mean field model

To understand why the critical time constant τ crit above which homeostasis
cannot control plasticity is so short, we here analyze the stability of the
background state in a mean field model. In line with the spiking network
model we consider a single population of neurons that fires with the mean
population firing rate ν (Fig. 2.3 (A)). To find an analytic expression that
characterizes the response of the background activity to changes in the re-
current weights w around the initial value w0, we begin with a linear neuron
model

ν = Θ + γx (2.2)

with the offset Θ and the slope parameter γ. Since we are interested in
weight changes around the initial value w0, the natural choice for x would
be w

w0
. However, here we set x = w

w0
ν to take into account the recurrent

feed-back. This choice makes γ dimensionless while Θ is measured in units
of Hz. Because weights evolve slowly, while population dynamics are fast
we can solve for ν and obtain the self-consistent solution

ν =
Θ

1− γw
w0

. (2.3)

As we will show later, a better qualitative fit to the spiking model can be
achieved with this heuristic, which will facilitate choosing the right param-
eters Θ and γ.

To introduce plasticity into the mean field model, we use the correspond-
ing rate-based plasticity rule

τw
dw

dt
=

ηw0

κ3
νpreνpost (νpost − gκ(ν̄post))

=
ηw0

κ3
ν2 (ν − gκ(ν̄)) (2.4)

which can be directly derived from the triplet STDP rule (Pfister and Gerst-
ner, 2006) and also can be interpreted as a BCM model (Bienenstock et al.,

26



2.2. Results

ν

Θ

*

γwA

-0.3
0

0.3

0.1 1 10

Real

-0.3
0

0.3

τ [τ crit]

Imaginary

B

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

ν̄
[κ

]

ν[κ]

τ = 0.1τ crit

4

Separatrix
Stable

Unstable

τ = 0.1τ crit

4

C

0

1

2

0 1 2

ν̄
[κ

]

ν[κ]
τ [τ crit]

0.99
0.85

0.50
0.10

D

0

10

20

0.95 1 1.05

R
at

e
[H

z]

w [w0]

Fit

Spiking model
Mean field

E

Figure 2.3 – Mean field theory predicts the stability of background activ-
ity. (A) Schematic of the mean field model. Plastic synapses are indicated by *.
(B) Eigenvalues of the Jacobian evaluated at the non-trivial fixed point ν = ν̄ = κ.
(C) Phase portrait for τ = 0.1τ crit, a choice where background activity is stable.
Nullclines are drawn in black. Arrows indicate the direction of the flow. Two proto-
typical trajectories starting close to 4 are shown. Blue line: Typical example of a
solution that returns to the stable fixed point. Solutions starting in the shaded area,
such as the red line, diverge to infinity. (D) The separatrix for four different values
of τ . (E) Population firing rate of the spiking network model (simulations: red
dots) for different values of weight w for connections from excitatory to excitatory
neurons. Black line: Least-square fit of Eq. (2.3) on the interval [0.98w0, 1.02w0] as
indicated by the black bar. Extracted parameters are Θ = (0.163 ± 0.002) Hz and
γ = (0.9476± 0.0004) (cf. Eq. (2.3)).
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1982; Pfister and Gerstner, 2006; Gjorgjieva et al., 2011). Here, η is the
relative learning rate and w0

κ3
sets the scale of the system. The second equal-

ity in Eq. (2.4) follows because in the recurrent model pre- and postsynap-
tic rates are the same (ν = νpre = νpost and ν̄post = ν̄). The function

gκ(ν̄) = ν̄2

κ scales the strength of LTD relative to LTP just as in the spiking
case (cf. Methods, Eq. (2.18)). In the mean field model, the rate detector
ν̄ (Eq. (2.1)) becomes the low pass filtered version of the population firing
rate

τ
dν̄

dt
= ν − ν̄ . (2.5)

To link the network dynamics with synaptic plasticity we take the deriva-
tive of Eq. (2.3), dν

dt =
(
ν2 γ

Θ

)
dw
dt and combine it with Eq. (2.4) to arrive at

τw
dν

dt
=

η

κ3

γ

Θ
ν4 (ν − gκ(ν̄)) (2.6)

which describes the temporal evolution of the mean firing rate as governed by
synaptic plasticity. Taken together, equations (2.5) and (2.6) define a two-
dimensional dynamical system with two fixed points. One lies at ν = ν̄ = 0
and represents the quiescent network. The remaining non-trivial fixed point
is ν = ν̄ = κ, which we interpret as the network in its background state.

Given these choices, we now ask whether this fixed point can be linearly
stable (Methods) and find that the stability of the background state requires

τ < τ crit ≡ Θτw
ηγκ

. (2.7)

For τ > τ crit infinitesimal excursions from the fixed point diverge, which
corresponds to run-away potentiation in this model. We note that τ crit cru-
cially depends on the parameters Θ, γ,τw,η and the target rate κ. However,
we can rescale the system to natural units, by expressing firing rates in units
of κ and time in units of τ crit, and plot the eigenvalues as a function of τ
(Fig. 2.3 (B)). The fact that the fixed point of background activity loses sta-
bility for too large values of τ is in good qualitative agreement with what
we observe in the spiking model. One should further note that Eq. (2.7)
is independent of the power of ν̄ appearing in gκ(ν̄), as long as the fixed
point of background activity exists (ν̄ > 1) and under the condition that at
criticality the imaginary parts of the eigenvalues are always non-vanishing
(see Methods). This indicates the presence of oscillations which are indeed
observed in the spiking network (cf. Fig. 2.2 (A), τ = 26 s). The fact that
the network falls silent for very small values of τ (e.g. τ = 2 s in Fig. 2.2 (A))
is not captured by the mean field model.

We can make further use of the mean field model to qualitatively under-
stand the behavior of the system far from equilibrium. Figure 2.3 (C) shows
the phase plane of a network with a stable fixed point (τ = 0.1 τ crit). When
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Figure 2.4 – The mean field predictions agree with results from direct
simulation of the spiking network. (A) Solid line: τcrit(η) as a function of the
learning rate η (cf. Eq. (2.7)), with simulation data (red points) for κ = 3 Hz. The
arrow indicates the value used throughout the rest of this figure (the dotted line
corresponds to the learning rate η = 1 as used in Figure A.1). (B) Same as before
but as a function of κ for η = 1
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= 6.25 fixed. (C) Lifetime values for the spiking

network (red points) with a scaled step function as predicted by mean field theory
(η = 1

w0
= 6.25 and κ = 3 Hz). All error bars are smaller than the data points.

the system is driven away from it, and perturbations are small, the dynamics
converge back towards the fixed point. However, when excursions become
too large, the network activity diverges (compare Fig. 2.3 (C), dotted solu-
tion) since the fixed point of background activity is only locally stable. A
numerical analysis shows that the basin of attraction is small when τ ap-
proaches τ crit from below (Fig. 2.3 (D)). Hence the system is very sensitive
to perturbations which easily lead to run-away potentiation. Although we
expect the basin of attraction of the mean-field model and the spiking model
only to be comparably where Eq. (2.3) describes the firing rates of the spik-
ing network accurately we can assume that for robust stability τ � τ crit has
to be satisfied.

2.2.3 Model comparison

To be able to make more quantitative predictions for the spiking network we
have to choose values for the parameters on the right hand side of Eq. (2.7).
These are the effective timescale of plasticity τw on the one hand, and Θ
and γ, which characterize the network dynamics, on the other hand. We
will now show that the latter can be determined from the static network
model, which is independent of plasticity. Note that the parameters κ and
η in our mean field model are shared with the spiking model which we will
use to quantitatively compare the two.

First, we relate the variables Θ and γ to the response of the spiking
network when all its EE synapses are modified. Since this is not feasible
analytically, we extract the response numerically by systematically varying
the EE weights around the initial state with w0 = 0.16. While doing so,
plasticity is disabled and we record the steady state population rate of the
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network (Fig. 2.3 (E)). We then minimize the mean square error for Eq. (2.3)
over a small interval [0.98w0, 1.02w0] and determine the following values:
Θ = (0.163± 0.002) Hz and γ = (0.9476± 0.0004). For the stability analysis
only the derivative of Eq. (2.3) at w0 matters. However, it is worth noting
that the response of the balanced network is well captured by Eq. (2.3) over
a much wider range than the one used for the fit. This behavior is an
expected consequence of the balanced state, which is known to linearize
network responses (van Vreeswijk and Sompolinsky, 1996; Van Vreeswijk
and Sompolinsky, 1998). Our approximation by a linear rate model breaks
down for higher rates since it does not incorporate refractory effects.

Second, under the assumption of independent and irregular firing in the
background state, the plasticity time constant τw is fully determined by the
target rate κ and known parameters of the triplet STDP model (see Methods
and (Pfister and Gerstner, 2006)). For κ = 3 Hz we find τw = 2975 s.

Using these results together with Eq. (2.7) we predict the critical timescale
of homeostasis for different values of η and κ and compare it to the results
that we obtain as before from direct simulations of the spiking network.
Figure 2.4 (A) shows that the dependence of τ crit on the learning rate η is
remarkably well captured by the mean field model. The fourth power depen-
dence on the background firing rate κ is described well for 3 Hz < κ < 5 Hz
(Fig. 2.4 (B)), but the theory fails for smaller values, where we start to
observe synchronous events in the population activity, which introduce cor-
relations that are not taken into account in the mean field approach. In
Fig. 2.4 (C) we plot the typical lifetimes (i.e. the time when the spiking
simulations are stopped, because they either show run-away potentiation or
the maximum simulated time t = 24 h is reached) as a function of τ . The
figure illustrates nicely that the critical time constant τ crit coincides with
the sharp transition in lifetimes observed in the spiking network.

When running additional simulations with smaller learning rates (η = 1
as opposed to η = 1

w0
= 6.25) we observe that the network destabilizes occa-

sionally for values of τ smaller than τ crit, but only after 22h of activity (see
Figure A.1). We find, however, that this “late” instability can be avoided
by either initializing the EE weights with a weight matrix obtained from
a stable run (η = 6.25 at t = 24 h) or by reducing the maximally allowed
synaptic weight (wmax = 0.5). Since these changes do not affect the “early”
instability (τ > τ crit), the “late” instability seems to have a different ori-
gin and might be linked to the spontaneous emergence of structure in the
network.

Here we focus on the “early” instability which is seen in all simulations
that do not respect the analytical criterion τ < τ crit, after less than one
hour of biological time, and therefore puts a severe stability constraint on
τ . Moreover the theory is able to quantitatively confirm the timescale τ crit

emerging from the spiking network simulations and allows us to see the
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Figure 2.5 – Slow synaptic weight decay renders weight distribution uni-
modal, but hardly affects global stability. (A) Evolution of the synaptic
weight distribution over 8 h of background activity. (B) Synaptic weight distri-
bution at t = 8 h. (C) Predictions for τ crit

decayof mean field theory (solid line) and
values obtained from direct simulation (points). (D) Final population firing rate
as a function of η for values of τ where the background state is a stable fixed point
(dashed line: target rate κ; error bars: standard deviation over 100 bins of 1 s).

detailed parameter dependence. In particular for a background rate of 3 Hz
and the learning rate η = 1 we find a critical timescale of τ crit ≈ 3 min
(simulations: (166.5± 0.5) s, mean field model: 170.6 s).

In summary, our mean field model discussed here makes accurate quan-
titative predictions about the stability of a large spiking network model
with plastic synapses for a given timescale of homeostasis. Furthermore it
gives useful insights into parameter dependencies which are computationally
costly to obtain from parameter sweeps in simulations of spiking networks.
Our theory confirms that metaplastic triplet STDP with biological learn-
ing rates has to be matched by a homeostatic mechanism that acts on a
timescale of seconds to minutes. In the next sections we will show that the
mean field framework described here can be readily extended to other forms
of homeostasis.

2.2.4 Weight decay

The induction of synaptic plasticity is only a first step towards the forma-
tion of long-term memory. In the absence of neuromodulators necessary to
consolidate early LTP into late LTP, these modifications have been found
to decay away with a time constant of τd ≈ 1h (Frey and Morris, 1997). To
study the effect of a slow synaptic decay on the stability of the background
state we focus on the early phase of plasticity. In particular we neglect
consolidation in the model and introduce a slow decay term
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dw(t)

dt
=

1

τw

ηw0

κ3
ν2

(
ν − ν̄2

κ

)
︸ ︷︷ ︸

Homeostatic triplet

+
η

τd
(w0 − w(t))︸ ︷︷ ︸
Decay term

(2.8)

where we already replaced the STDP rule by its equivalent rate based rule
(see Pfister and Gerstner (2006) and Methods, Eq. (2.17)), while the effect
of the decay term can be written identically in the rate based model and
the STDP model. Note that for τd → ∞ we retrieve the model studied
in Figs. 2.1-2.4. Again we determine the critical timescale of homeostasis in
numerical simulations of the spiking network by systematically varying τ for
different values of η. We further find that the slow weight decay causes the
synaptic weights to stabilize in a unimodal distribution (Fig. 2.5 (A) and
(B)) which is fundamentally different to what we observed for the decay-
free case. However, the critical time constant of homeostasis τ crit

d is only
marginally larger than in the decay-free case (Fig. 2.5 (C)).

To assess the impact of the decay on the critical timescale, the mean
field approach, as it was derived above, can be adapted to take into account
the constant synaptic decay (Methods). Provided the decay time constant
is sufficiently long, we find the critical time constant to be

τ crit
d =

(
1

τ crit
− 1

τd

)−1

(2.9)

which is in good agreement with the results from direct simulations (Fig. 2.5
(C)). From Eq. (2.9) we can further confirm that the decay term only causes
a small positive shift in the critical time constant as it was also observed
in the spiking network. Furthermore, we see that the population firing rate
settles to values closer to the actual target rate κ (Fig. 2.5 (D)) than this
was the case in the decay-free scenario.

In summary, adding a slow synaptic weight decay to the plasticity model
is sufficient to cause substantial change to the steady state weight distribu-
tion in the network. Nevertheless this slow process does not affect the need
for a rapid homeostatic mechanism.

2.2.5 Synaptic scaling

To test whether the previous findings are limited to our particular choice
of metaplastic homeostatic mechanism, or whether they are also meaningful
in the case of synaptic scaling (Turrigiano et al., 1998) we now adapt the
model by van Rossum et al. (2000) and combine it with triplet STDP

dw(t)

dt
=

1

τw

ηw0

κ3
ν2 (ν − κ)︸ ︷︷ ︸

Triplet term

+
1

τs

η

κ

(
κ−

(
ν̄m

κm−1

))
w︸ ︷︷ ︸

Scaling term

(2.10)
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where the rate of LTD is fixed in the triplet term (cf. Eq. (2.17)) and synap-
tic scaling is the only form of homeostasis. One important difference to the
previous metaplastic STDP model is the addition of the scaling time con-
stant τs which controls the timescale of synaptic scaling. In the metaplastic
model we analyzed above this time constant is implicit, since it is the same
as the one of plasticity (τw). In contrast to the original model of synaptic
scaling (m = 1 (van Rossum et al., 2000)) here we choose m = 3 to avoid
additional unstable fixed points in the phase plane (Fig. 5.3 (D)).

Bearing this in mind we move on to linearizing the system around the
fixed point of background activity (Methods). We find that for τs ≈ τw the
eigenvalues of the linearized system qualitatively have the same shape as
for the plasticity rule with homeostatically modulated LTD (Fig. 5.3 (A)).
In fact for sensible values of τs, the stability condition is exactly the same:
τ < τ crit (cf. Eq. (2.7)). However, in the case of synaptic scaling Eq. (2.7)
represents a necessary, but not a sufficient condition for stability. For too
large values of τs stability is lost also in the case of τ < τ crit (Fig. 5.3 (B)).
On the other hand decreasing τs indefinitely leads to oscillations without
any further effect on stability (see Methods and (van Rossum et al., 2000)).

To compare these findings with the equivalent STDP rule we perform
numerical simulations with the full spiking network in which we set η = 1
and choose τs on the order of τw (τs = 2986 s). By changing τ systematically
(Fig. 5.3 (C)) we determine the critical value to be smaller than predicted
(≈ 0.7 τ crit), but within the same order of magnitude (Fig. 5.3 (A,C)). Con-
versely when we start with τ = 20 s held fixed, we determine the critical
value of τs to be on the same order as τw (Fig. 5.3 (B)). At the end of a
stable simulation run (t = 24 h) we find that synaptic weights have formed a
unimodal distribution (Fig. 5.3 (E)), an expected behavior of synaptic scal-
ing (van Rossum et al., 2000).

In summary we have shown here that a fast rate detector is necessary to
produce fast homeostatic responses to guarantee stable network dynamics
also for the case of synaptic scaling. Although the quantitative agreement
between the mean field model and the full spiking simulation is less accurate
than in the case of for the metaplastic model above, both models confirm
that the rate detector has to act on a timescale of seconds to minutes.
Furthermore the time constant of the scaling term τs has to be comparable
to the time scale of plasticity (τw = 2975 s) or stability is compromised,
when τs is chosen too large (and oscillations occur, when chosen too small).

2.3 Discussion

In this paper we have shown that a realistic additive triplet STDP rule (Pfister
and Gerstner, 2006) can sustain a stable background state in balanced net-
works provided there is a homeostatic mechanism with a fast rate detector
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that acts on a timescale of seconds to minutes. We confirmed this result
in a generic two dimensional mean field model in which the stability of the
background state is interpreted as the linear stability of a non-zero fixed
point of the system for which the timescale of the homeostatic rate detec-
tor τ plays the role of a bifurcation parameter. These results are generic,
i.e. independent of model details. In particular, we showed that similar re-
sults are obtained for triplet STDP with a form of metaplastic homeostasis,
where homeostasis was implemented as a modulation of the LTD rate, or al-
ternatively in combination with synaptic scaling. The mean field formalism
produces accurate quantitative predictions for metaplastic triplet STDP. Al-
though, in the case of triplet STDP in combination with synaptic scaling,
the match of mean field model and direct simulations was less accurate,
both support the notion that a fast rate detector is required for stability.
For the case of synaptic scaling we found additionally that the homeostatic
changes have to be implemented on a timescale comparable to the one of
plasticity itself (τs ≈ τw ≈ 1 h), which is fast compared to most homeostatic
mechanisms reported in the experimental literature, but consistent with ear-
lier simulation studies that used fast homeostasis (von der Malsburg, 1973;
Miller and MacKay, 1994; van Rossum et al., 2000; Del Giudice et al., 2003;
Lazar et al., 2009; Clopath et al., 2010).

2.3.1 Homeostasis and plasticity

The fact that Hebbian learning has to be opposed by some kind of compen-
satory mechanism has long been known (von der Malsburg, 1973; Bienen-
stock et al., 1982; Oja, 1982; Miller and MacKay, 1994) and such mechanisms
indeed have been found (Huang et al., 1992; Abraham and Bear, 1996; Turri-
giano and Nelson, 2000). In the following we will briefly review the different
types of homeostasis affecting synaptic weights and how they relate to what
was used in the present study.

Homeostasis can be classified in two main categories. We call models
“weight homeostasis” if they try to keep all afferent weights into a cell nor-
malized (von der Malsburg, 1973). Such models have been criticized because
they are non-local (Bienenstock et al., 1982), i.e. they require cell wide spa-
tial averaging over synapses, which can only be achieved in a plausible way
if all synaptic weights decay at a global rate modulated by the total afferent
synaptic strength (Miller and MacKay, 1994). To avoid this, “rate home-
ostasis” models have been proposed (Bienenstock et al., 1982) which strive to
maintain a certain postsynaptic firing rate. This approach, which we chose
in the present study, has more experimental support (Turrigiano and Nelson,
2004; Watt and Desai, 2010). In contrast to the spatial filtering as described
above, this mechanism requires temporal filtering of the postsynaptic rate
over a given time window (represented by τ in this study). We can fur-
ther distinguish between two principal types of homeostasis. A homeostatic
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mechanism can either act on the synaptic weights directly (e.g. synaptic
scaling), or indirectly through metaplasticity (Abraham and Bear, 1996), by
changing parameters of the plasticity model over time. The former, direct
form of homeostasis allows for synaptic changes even in the absence of activ-
ity as it is seen in synaptic scaling experiments (Turrigiano et al., 1998) on a
timescale of days. This is in contrast to theoretical models that apply scaling
by algorithmically enforcing weight normalization (von der Malsburg, 1973;
Lazar et al., 2009) on the timescale of one or a few simulation time-steps.

In our study we looked at both approaches. In the metaplastic triplet
STDP model homeostasis manifest itself as a shift in the plasticity thresh-
old between LTD and LTP (Pfister and Gerstner, 2006; Clopath et al., 2008,
2010; El Boustani et al., 2012). This is achieved by modulating the rate of
LTD induction using the temporal average of the postsynaptic firing rates
over a given time window (τ). As we have shown, this average has to follow
the neuronal spiking activity very rapidly, meaning that plasticity param-
eters change on a short timescale, which is comparable to the duration of
many standard STDP protocols (Sjöström et al., 2001). We therefore predict
that if biological circuits rely on such a metaplastic homeostatic mechanism,
weight changes are different for cells that are silent prior to a plasticity in-
duction than for cells that have been primed by postsynaptic firing (over an
extended period before the induction protocol). In Fig. 2.7 (A) we demon-
strate this idea in the model of metaplastic triplet STDP (τ = 60 s) for a
typical LTD induction protocol (75 pairs at 5 Hz with -10 ms spike offset).
Figure 2.7 (B) shows the relative differences between primed and unprimed
experiments in dependence of the length of the priming duration or the prim-
ing frequency respectively. Since this plasticity rule implements homeostasis
as an activity dependent change of the LTD learning rate, the amount of
LTD changes dramatically while LTP is unaffected by priming. However, we
expect that the main results of our mean field analysis also hold for cases in
which LTP is affected, as long as the net synaptic weight change decreases
with the intensity of priming. In either case the functional form of the de-
pendence allows us to draw conclusions on the order of magnitude of τ and
the exponent of ν̄ appearing in A−i (t) (cf. Eq. 2.18). Conversely, if home-
ostasis was exclusively mediated by synaptic scaling, we would expect that
it manifests as a heterosynaptic effect. Its impact, however, would likely
be smaller than in the case of metaplastic triplet STDP, because synaptic
scaling does not have an explicit dependence on the presynaptic firing rate.

Since stability requires τ to be relatively short, it is also worth con-
sidering the extreme case where it is on the timescale of a few hundred
milliseconds. In that case the learning rule can be interpreted as a quadru-
plet STDP rule combining a triplet term for LTP (e.g. post-pre-post) with
a quadruplet term for LTD (e.g. post-post-post-pre). While such a choice
of τ would make sense from a stability point of view, this behavior is not
seen in experiments (Sjöström et al., 2001).
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2.3.2 Influence of the model design

The timescales of synaptic plasticity and the time constants behind most
homeostatic mechanisms reported in experiments are far apart. While plas-
ticity can cause substantial synaptic changes in less than one minute (Markram
et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001), homeostatic responses
typically differ on the order of several magnitudes (hours or days) (Turrigiano,
2008; Watt and Desai, 2010). In this paper we have shown that even if home-
ostatic changes manifest relatively slowly they have to be controlled by a fast
rate detector, else triplet STDP is incompatible with the low background
activity observed in cortical circuits. We argue that this statement is likely
not to be limited to our particular model, but rather applies to an entire
family of existing plasticity models.

The basic building blocks of our study were a network model and a home-
ostatic plasticity rule. We used a generic balanced network model (Brunel,
2000; Compte et al., 2000; Brunel and Wang, 2001; Vogels and Abbott, 2005;
Kumar et al., 2008b) to mimic brain-like spiking activity in a recurrent neu-
ral network. It is clear that the particular choice of network model does
affect our results in a quantitative way and absolute predictions would re-
quire a more accurate and detailed network model. Nevertheless, we expect
homeostasis to have similar timescale requirements in more detailed models
as well. Indeed, as long as a strengthening of the excitatory synapses yields
increased firing rates without a major change in the correlations, the qualita-
tive predictions of the mean field model hold. However, our simulations were
limited to roughly 1000 recurrent inputs per neuron, which is presumably
less than what real cortical neurons receive (DeFelipe and Fariñas, 1992), so
that excitatory run-away could build up even more rapidly in real networks
than in our simulations.

The second building block of our model was the plasticity rule. Here
we chose triplet STDP (Pfister and Gerstner, 2006) as a plasticity model
that quantitatively captures a large body of experiments (Sjöström et al.,
2001; Markram et al., 2012). One key feature of this model, which is seen
across a range of in-vitro plasticity studies, is the fact that it yields LTP
for high postsynaptic firing rates. The emergence of a critical timescale
for homeostasis is mainly rooted in this fact and it is largely relaxed for
pair-based STDP, be it additive or multiplicative (Morrison et al., 2007).
However, such models do not capture experimental data as well as triplet
STDP.

With the models we analyzed, namely the metaplastic triplet STDP and
triplet STDP with synaptic scaling, we combined a realistic STDP learn-
ing rule with two quite different, but commonly used synaptic homeostatic
mechanisms (Bienenstock et al., 1982; van Rossum et al., 2000; Pfister and
Gerstner, 2006; Clopath et al., 2008; Lazar et al., 2009; Clopath et al., 2010;
Tetzlaff et al., 2011; Gjorgjieva et al., 2011; El Boustani et al., 2012; Tetzlaff
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et al., 2012). The fact that we were able to show in both cases, either using
a generic mean field model or numerical simulations of large balanced net-
works, that a fast rate detector is needed for stability, suggests that these
results are quite general. The argument is further strengthened by the fact
that existing computational models demonstrating stable background activ-
ity in plastic recurrent network models either use a form of multiplicative
STDP which can be intrinsically stable (Morrison et al., 2007), but has poor
memory retention (Morrison et al., 2007; Billings and van Rossum, 2009), or
rely on a fast homeostatic mechanism (Lazar et al., 2009; El Boustani et al.,
2012). In fact one of the first studies that illustrates stable learning in large
recurrent networks combined with long memory retention times (El Bous-
tani et al., 2012) is a model of metaplasticity built on top of the triplet
model (Pfister and Gerstner, 2006). To describe effects observed in prim-
ing experiments (Huang et al., 1992; Christie and Abraham, 1992; Mockett
et al., 2002), the authors introduce two floating plasticity thresholds that
modulate the rate of LTP and LTD depending on the low-pass filtered neu-
ronal activity. El Boustani et al. (2012) obtain the time constants behind
these filters by fitting their model to experimental data. It is striking, and
in agreement with what we report here, that the timescales they find are on
the order of 1 s (El Boustani et al., 2012).

We conclude that current plasticity models that capture experimental
data well require homeostasis to be able to react fast in order to maintain a
stable background state. Likewise, if there is no rapid homeostatic control,
most current plasticity models are probably missing a key ingredient to what
makes cortical circuits stable.

2.3.3 Experimental evidence

The metaplastic triplet STDP rule we used makes use of an homeostati-
cally modulated rate of LTD and can be mapped to a BCM-like learning
rule (Pfister and Gerstner, 2006; Gjorgjieva et al., 2011). The BCM theory
relies on a plasticity rule with a neuron wide sliding threshold (Bienenstock
et al., 1982; Cooper et al., 2004). There seems to be some experimental
ground for this idea (Wang and Wagner, 1999; Hulme et al., 2012) and it is
intriguing, that the effects reported there are on the order of 30 min or less
which points towards a relatively fast mechanism. We should further point
out, that the arguments that led us to the critical timescale of homeostasis
are not limited to a neuron wide sliding threshold. In fact the mean field
equations for a global or local synaptic sliding threshold, or even one based
on local dendritic compartments, are identical. Therefore the arguments we
put forward also hold for the latter cases, which have experimental support
through priming experiments(Huang et al., 1992; Christie and Abraham,
1992; Mockett et al., 2002). Priming experiments highlight changes in the
induction of plasticity which depends on the synaptic activity over some
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30 min.

With synaptic scaling we studied another possibility of introducing home-
ostasis into the triplet STDP model. Homeostatic scaling of synapses has
good experimental support (Turrigiano et al., 1998; Turrigiano, 2008; Watt
and Desai, 2010). Although it is generally associated with long timescales
(order of days), also more rapid forms of scaling are known (Sutton and
Schuman, 2006; Riegle and Meyer, 2007; Ibata et al., 2008) of which some
indeed act on the order of minutes (Frank et al., 2006). Further modeling is
required to test the ability of these rapid forms of homeostasis to guarantee
stability in recurrent networks.

Finally one should note that the critical time scale of the rate detector
strongly depends on the firing rates of the background state ( τ crit ∼ κ−4, cf.
Eq. (2.7) and Methods). The low firing rates reported experimentally (Burns
and Webb, 1976; Koch and Fuster, 1989; Barth and Poulet, 2012) are there-
fore potentially necessary to guarantee the stability of the network. Con-
versely, cells or sub-networks with higher mean firing rates should have lower
learning rates in order to be stable.

2.3.4 Limitations

Despite the mean field formalism being a drastic simplification of the original
spiking model, the results we were able to derive from it were surprisingly
accurate in the case of metaplastic triplet STDP and off by a factor of two
in the case of triplet STDP with synaptic scaling. In all cases our mean field
predictions overestimate the critical timescale obtained from simulations.
This discrepancy has multiple potential reasons. First, in the mean field
model we completely omit the existence of noise, fluctuations, and correla-
tions. That these factors do play a role follows from the observation that
the spiking network does not stabilize at the target rate κ, but at higher
values (cf. Fig. 2.2 e). Although correlations in the AI state are small, they
are on average positive (Renart et al., 2010). When we estimated τw we
explicitly ignored correlations and required that LTD and LTP cancel at a
firing rate κ. Adding correlations causes this cancellation to take place at
slightly higher rates, which reduces the effective critical time constant. In
the rate formulation of the STDP rule we make the simplifying assumption
that the synaptic traces are perfect estimates of the postsynaptic firing rates.
Indeed it can be shown that fluctuations that are present in the rates, bias
the learning rule towards LTP (see Section A.2). Finally, any deviation of
the population activity from its target value, initial or spontaneous, can be
thought of as perturbations around the fixed point of background activity
in the mean field model. This can compromise stability when the basin of
attraction is small, as is the case when τ is close to criticality (Fig. 2.3 (D)).
Again, such perturbations bias the critical value for the spiking network to-
wards lower values. All the above points concern the simplifications made
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when going from the spiking model to the mean field model.

More importantly, the spiking model itself already represents a drastic
simplification of the biological reality. For instance, we did not include
neuronal firing rate adaptation or synaptic short-term plasticity (STP) in
the present model. The timescales involved in firing rate adaptation are
typically short (on the order of 100 ms) and their effect therefore negligible
at the low firing rates of background activity (Benda and Herz, 2003; Brette
and Gerstner, 2009). While the time constants behind STP can be longer
than that, their stabilizing effect is somewhat less clear since they can be
facilitating and depressing (Markram et al., 1998). Although we do not
expect STP to have a strong impact on our main results, it would be an
interesting avenue to verify this in future studies.

All our present studies were limited to spontaneous background activity.
In a more realistic scenario we would expect the network to receive external
input with spatio-temporal correlations. Such input will generally cause
synaptic weights to change, which in the mean field model corresponds to a
perturbation of the dynamical network state around the stable fixed point.
If the perturbation leaves the system in the basin of attraction of background
activity, equilibrium will be restored over time. If, however, the perturbation
is strong, or perturbations are in rapid concession and start to pile up, the
system loses stability once its dynamical state reaches the separatrix (cf.
Fig. 2.3 (C,D)).

Another possibility worth mentioning is homeostatic regulation through
inhibitory synaptic plasticity (ISP) (Lamsa et al., 2010; Woodin et al., 2003;
Woodin and Maffei, 2010; Castillo et al., 2011; Kullmann et al., 2012; Vo-
gels et al., 2013). Recent theoretical studies (Vogels et al., 2011; Luz and
Shamir, 2012; Srinivasa and Jiang, 2013) suggest that ISP could produce
an intrinsically stable feed-back system. Although we cannot exclude ISP
as an important factor in network homeostasis, we have excluded it in the
current study. It is likely that to stabilize Hebbian plasticity at excitatory
synapses, ISP has to act on a comparable timescale (Sprekeler et al., 2012)
and it will be interesting to integrate future experimental findings into a
similar framework as presented here.

2.3.5 Conclusion

In summary, homeostatic mechanisms are necessary to stabilize the back-
ground activity in network models subject to Hebbian plasticity. Home-
ostasis needs to react faster than what is experimentally observed. This
raises the important question of how the background activity in the brain
can be stable. Our results suggest that the existence of a rapid homeostatic
mechanism could be one possible answer. That, however, would require this
mechanism to act on the same timescale as most STDP induction proto-
cols. This then raises the question, why it has not been observed so far.

40



2.3. Discussion

?

0
1
2
3
4

ν̄
[H

z]

τ = 60 s

-15
-10

-5
0

85 90 95 100 105 110 115

∆
w

[a
.u

.]

Time [s]

A
pre

post

Primed/Unprimed

0

10

20

30

0 100 200 300

∆
w

p
−

∆
w

q

∆
w

q
[1
]

Duration [s]

0
50
100
150
200

0 5 10 15

Frequency [Hz]

LTD
LTP

B

Figure 2.7 – Postsynaptic priming affects STDP protocols. Simulation of
the metaplastic triplet STDP rule (Pfister and Gerstner, 2006). (A) Top: Typical
protocol for the induction of LTD (75 pairs (post-pre) at 5 Hz with -10 ms spike
offset) in the triplet STDP model (τ = 60 s) with a postsynaptic cell which is qui-
escent prior to the LTD protocol (black) compared to induction after postsynaptic
priming (blue). Top: Pre- and postsynaptic spikes for priming and pairing. Top,
right: LTD induction. Middle: postsynaptic rate estimate ν̄ of the postsynaptic
cell. Bottom: Weight change ∆w over time. Postsynaptic priming period (duration
100 s): regular firing at κ = 3 Hz terminated by one second of silence (?) to avoid
triplet effects. (B) Relative differences in final weight change between quiet (∆wq)
and primed protocol (∆wp) at the end of a LTD (gray) plasticity protocol. LTP
protocol for reference (hollow, same paring protocol, with reversed timing, +10 ms
spike offset). Left: For different durations of the priming period and fixed priming
frequency of 3 Hz. Right: Different priming frequencies with fixed priming duration
of 60 s. The black line is a RMS fit to LTD data points of: (left) an exponential
function; (right) of a quadratic function.
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Suitable plasticity protocols to detect such a mechanism should be similar
to priming experiments (Huang et al., 1992; Christie and Abraham, 1992),
but on the timescale of 1 min (Fig. 2.7). Another possibility would be, that
the plasticity rate η

τw
is not a constant after all, but subject to some neu-

romodulatory change (Pawlak et al., 2010). This could be possible, since it
cannot be excluded that conditions in slice preparations, like the ones used
to obtain the parameters of triplet STDP (Sjöström et al., 2001), are differ-
ent from in-vivo conditions. Finally, also fast forms of ISP could play a role
in network stability.

No matter whether through ISP or additional, hitherto unseen excitatory
homeostatic effects, a variation of current models of homeostasis and plas-
ticity seem inevitable, to achieve stability in plastic network models whilst
making them biologically plausible.

2.4 Methods

To study stability in plastic spiking recurrent networks we simulated net-
works of 25000 integrate-and-fire neurons with conductance-based synapses
(Fig. 2.1 (A)). The size of the network was chosen large enough to allow
for an asynchronous irregular (AI) background state with low spiking cor-
relations, but still small enough to enable simulations over long periods of
biological time.

2.4.1 Neuron model

Table 2.1 – Neuron model and synaptic parameters

Membrane Threshold Synapse
U exc 0 mV τ thr 5 ms τampa 5 ms
U rest -70 mV ϑrest -50 mV τgaba 10 ms
U inh -80 mV ϑspike 100 mV τnmda 100 ms
τm 20 ms (10 ms*) α 0.5

*) only inhibitory neurons

The networks we study consist of leaky integrate-and-fire neurons with
a relative refractory mechanism connected by conductance-based synapses
(Vogels and Abbott, 2005). The membrane voltage Ui of neuron i evolves
according to

τmdUi
dt

= (U rest − Ui)

+gexc
i (t)(U exc − Ui)

+ginh
i (t)(U inh − Ui) (2.11)

42



2.4. Methods

A spike is triggered when Ui crosses the spiking threshold ϑi. After a spike Ui
is reset to U rest

i and the threshold ϑi is increased ϑi → ϑspike to implement
refractoriness. In the absence of spikes the threshold relaxes back to its
resting value ϑrest according to

τ thrdϑi
dt

= ϑrest − ϑi (2.12)

with τ thr = 5 ms similar to Clopath et al. (2008). Inhibitory neurons were
modeled identically except for a shorter membrane time constant τm. All
relevant parameters are summarized in Table 2.1.

The spike train Sj(t) of neuron j is defined as Sj(t) =
∑

k δ(t−tkj ), where

the sum runs over all k corresponding firing times tkj of neuron j. It affects
the synaptic conductances of downstream neurons as

dginh
i

dt
= − ginh

i

τgaba
+
∑
j∈inh

wijSj(t) (2.13)

if the index j corresponds to an inhibitory neuron or

dgampa
i

dt
= −

gampa
i

τampa
+
∑
j∈exc

wijSj(t) (2.14)

dgnmda
i

dt
= −g

nmda
i

τnmda
+ gampa

i (2.15)

in the case of an excitatory cell. Here wij is the weight of the synapse
connecting neuron j with i (wij = 0 if the connection does not exists). Ex-
citatory synapses contain a fast rising AMPA component with exponential
decay and a slowly rising NMDA component with its respective exponen-
tial decay with time constant 100 ms. For simplicity we implemented the
NMDA component as a low pass filtered version of the AMPA conductance
(Eq. (2.15)). The complete excitatory postsynaptic potential (EPSP) is then
given by a weighted sum of the AMPA and NMDA conductances

gexc
i (t) = αgampa

i (t) + (1− α)gnmda
i (t) (2.16)

With the chosen parameters (cf. Table 2.1), a typical EPSP has an ampli-
tude of about 0.7 mV, as shown in Fig. 2.1 (B). For computational efficiency
the voltage dependence of NMDA channels was omitted.

2.4.2 Network model

All units (20000 excitatory and 5000 inhibitory units, see Table 2.2 for de-
tails) are connected randomly with a sparse connectivity of 5%. Additionally
each excitatory cell receives external input from a pool of 2500 independent
Poisson processes firing at 2 Hz that are connected with 5% probability.
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Table 2.2 – Network model parameters

Neuron groups and connectivity Synaptic weight structure
Neural population Size Connection Weight
Excitatory (E) 20000 E→ E wEE = w0 = 0.16
Inhibitory (I) 5000 E→ I wEI = w0

External Poisson (ext) 2500 at 2 Hz I→ E wIE = 1.00
Network connectivity 5% I→ I wII = 1.00

Connectivity from ext 5% ext Poisson → E wPE = w0

Table 2.3 – Plasticity model parameters

Plasticity window A+ 6.5× 10−3

τ+ 16.8 ms
τ− 33.7 ms
τ slow 114 ms

Initial weight w0 0.16
Weight limits wmin 0

wmax 1
Target firing rate κ 3 Hz
Rel. learning rate η 1

w0
= 6.25*

η 1 (Fig. A.1)

*) As used in Figs. 2.2 and 2.4 (B,C).

The relevant synaptic weight values are summarized in Table 2.2. Due to
the high recurrence (on average 1000 out of 1125 connections are from within
the network) the mean firing rate and network activity are sensitive to small
changes in the recurrent synaptic strength. By appropriate choice of the ex-
citatory weights (w0 = 0.16) the network is initially tuned to the balanced
state with AI activity at a mean population activity of approximately 3 Hz.

2.4.3 Plasticity model

We model synaptic plasticity after the triplet STDP model of Pfister and
Gerstner (2006), using the minimal parameter set corresponding to in-vitro
visual cortex data Sjöström et al. (2001). Plasticity only affects the EE
recurrent connections. Weight updates ∆wij act additively on the matrix
elements wij and are given by

dwij
dt

= ηw0A
+ z+

j (t) zslow
i (t− ε)Si(t)

−ηw0A
−
i (t) z−i (t)Sj(t) (2.17)

where ε is a small positive number and z+
n (t), z−n (t) and zslow

n (t) are synaptic
traces of neuron n defined as dzx

dt = − zx

τx + Sn(t) with associated time con-
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stants τ+, τ− and τ slow respectively (see Table 2.3 and Pfister and Gerstner
(2006)). Since the original triplet model describes relative synaptic changes,
weight updates in Eq. (2.17) are scaled by the factor ηw0, where w0 is the
initial synaptic weight and η is an additional parameter that can be inter-
preted as a learning rate, or a conversion factor between the weight scales
of the model and the true biological scale. In the model we approximate
the biological scale by choosing plausible values for w0 (cf. Fig. 2.1 (B)) and
therefore expect η to be of the order of one. For a synapse with an initial
weight of w0, a value of η = 1 corresponds to the learning rate that best
fits visual cortex data (Pfister and Gerstner, 2006). However, since small
values of η are computationally expensive we used η = 1

w0
= 6.25 in Fig. 2.2

to ensure that a stable weight distribution can be observed within a day of
simulated biological time (∼ 4d of computation time). Note that for η = 1
we would expect a comparable degree of convergence after 6.25 days of sim-
ulated time (roughly four weeks of computation). During ongoing plasticity
the allowed weight values are limited to the interval 0 < wij < wmax. Note
that to avoid the creation of new synapses, connections that have zero weight
initially, remain absent (wij = 0) throughout the entire simulation.

In simulations with metaplastic triplet STDP the amount of long term
synaptic depression (LTD) A−i (t) is varied homeostatically as a function of
the moving average ν̄i of the postsynaptic firing rate (Bienenstock et al.,
1982; Pfister and Gerstner, 2006; Clopath et al., 2010; Gjorgjieva et al.,
2011) with

A−i (t) =
A+τ+τ slow

τ−κ
ν̄i(t)

2 (2.18)

This choice of A−i (t) ensures that for uncorrelated Poisson firing at the rate
κ LTP and LTD cancel on average. The moving average ν̄i of the firing rate
of neuron i is implemented as a low pass filtered version of its spike train

τ
dν̄i
dt

= −ν̄i + Si(t) ⇔ ν̄i =
1

τ

∑
k|tki<t

exp

(
− t− t

k
i

τ

)
(2.19)

where τ is the timescale which controls of the temporal evolution of A−i (t)
(cf. Eq. (2.18)).

In simulations that require an additional slow weight decay of the weights
we approximate this exponential decay, to avoid the costly operation of up-
dating all weights after each time step, by periodically (period ∆ ≈ 10 s)
multiplying all weights by the factor exp(−∆/τd) ≈ 0.997. Finally, simula-

tions of synaptic scaling are performed using a fixed value A−i = A+τ+τ slow

τ− κ.
The scaling of the weights is approximated with the same approach as for
weight decay. In such cases ∆ is adapted appropriately according to the
occurring scaling time constant τs.
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2.4.4 The time constant of plasticity

We determine the timescale of plasticity in the mean field model by approxi-
mating τw from the plasticity parameters of the triplet STDP model (Pfister
and Gerstner, 2006). To do so we consider the expectation value of the
mean weight update averaged over many spike pairs, and we assume that
pre- and postsynaptic firing is uncorrelated with stationary rates νj and νi
respectively. The average relative weight change over time then reads〈

dwij
dt

〉
= ηw0

〈
A+ z+

j (t) zslow
i (t− ε)Si(t)−A−i (t) z−i (t)Sj(t)

〉
= ηw0

(
A+τ+τ slowνjν

2
i − τ−νjνi

〈
A−i (t)

〉)
=

ηw0

κ3
A+τ+τ slowκ3︸ ︷︷ ︸

≡ 1
τw

νjνi

(
νi −

ν̄i(t)
2

κ

)
︸ ︷︷ ︸

BCM like

(2.20)

The resulting differential equation can be directly identified with Eq. (2.4)
to obtain the effective time constant τw = 1

A+τ+τ slow
1
κ3
≈ 2975 s.

2.4.5 Numerical simulations

All differential equations were integrated using forward Euler integration
with a 0.1 ms time step. Spiking simulations were written in C++ using
Open MPI and the Boost libraries. The sources were compiled using the
GNU C compiler. Simulations were run on 5 Linux workstations equipped
with Intel(R) Core(TM)2 Duo E8400 CPUs and 24 GB of RAM each. It
took approximately four and a half days to simulate one day of biological
time.

Numerical results for the phase plane analysis, such as the position of
the separatrix, were obtained by integrating the ODEs of the mean field
model numerically using custom-written Python code.

2.4.6 Derivation of the stability condition in the mean field
model

To analyze the stability of the fixed point of background activity (ν = ν̄ = κ)
in the case of the metaplastic triplet STDP rule, we consider the Jacobian
J of the two dimensional system (cf. Eqs. (2.5),(2.6)) in the general case of
gκ(ν̄) = ν̄n

κn−1 for n > 1 .

J =

(
∆
(
5ν4 − 4ν3 ν̄n

κn−1

)
−n∆ν4

(
ν̄n−1

κn−1

)
1
τ − 1

τ

)
(2.21)

where we introduced the auxiliary variable ∆ ≡ 1
τw

η
κ3

γ
Θ . When evaluated at

the fixed point J reduces to
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J |ν=ν̄=κ =

(
∆κ4 −n∆κ4

1
τ − 1

τ

)
(2.22)

with characteristic polynomial

(
∆κ4 − λ

)(
−1

τ
− λ

)
+
n∆κ4

τ
= λ2−λ

(
∆κ4 − 1

τ

)
+

(n− 1)∆κ4

τ
(2.23)

which determines the eigenvalues to be

λ1,2 =
1

2

(
∆κ4 − 1

τ

)
±

√
1

4

(
∆κ4 − 1

τ

)2

− (n− 1) ∆κ4

τ
(2.24)

of the linearized system at the fixed point of background activity. Stability
of the fixed point requires all eigenvalues to have negative real parts (e.g.
(Strogatz, 2001)). We now prove that the real part of both eigenvalues is
negative if and only if τ < 1

∆κ4
. The square root in Eq. (2.24) is either

purely imaginary, in which case τ < 1
∆κ4

follows directly. For the case in
which the square root is real we can express the larger of the two eigenvalues
as

2λ1 =

(
∆κ4 − 1

τ

)
+

√√√√(∆κ4 − 1

τ

)2
[

1− 4(n− 1)∆κ4

τ
(
∆κ4 − 1

τ

)2
]

(2.25)

=

(
∆κ4 − 1

τ

)
+

∣∣∣∣∆κ4 − 1

τ

∣∣∣∣√c (2.26)

where we introduced the variable c for the term in the square brackets
(Eq. (2.25)). If ∆κ4 > 1

τ then λ1 = 1
2

(
∆κ4 − 1

τ

)
(1 +

√
c) > 0 and the fixed

point is unstable. If, however, ∆κ4 < 1
τ then we know

2λ1 =

(
∆κ4 − 1

τ

)
+

√(
∆κ4 − 1

τ

)2

− 4 (n− 1) ∆κ4

τ

<

(
∆κ4 − 1

τ

)
+

√(
∆κ4 − 1

τ

)2

= 0 . (2.27)

Here, we used the fact that all occurring constants are positive, n > 1 and
the argument in the square root is positive as well. Finally we can conclude
the fixed point is stable if τ < 1

∆κ4
= Θτw

ηγκ ≡ τ
crit. This identifies τ crit as an

important limiting case for the stability of the fixed point. It is interesting
to note that τ crit is independent of n.
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Stability condition for weight decay

If we are to include an additional weight decay in the above model we replace
Eq. (2.6) by

τw
dw

dt
=

ηw0

κ3
ν2

(
ν − ν̄n

κn−1

)
+
η

τd
(w0 − w) (2.28)

and proceed similarly as before by replacing all occurrences of w. In the
decay term we can use the identities w = w0

γ

(
1− Θ

ν

)
and since γ = 1 − Θ

κ
(c.f. Eq. (2.3)) to rewrite

η

τd

γ

Θ
ν2

(
1− w

w0

)
=

η

τd

ν

κ
(κ− ν) . (2.29)

We use this expression together with our results from Eq. (2.21) and the
abbreviation ∆ ≡ 1

τw
η
κ3

γ
Θ , to arrive at

dv

dt
= ∆ ν4

(
ν − ν̄n

κn−1

)
+
η

τd
ν
(

1− ν

κ

)
(2.30)

which leads to the following Jacobian at the fixed point

J |ν=ν̄=κ =

(
∆κ4 − η

τd
−n∆κ4

1
τ − 1

τ

)
. (2.31)

The corresponding eigenvalues are given by

λ1/2 =
1

2

(
∆κ4 − η

τd
− 1

τ

)
±

√
1

4

(
∆κ4 − η

τd
− 1

τ

)2

−
(

∆ (n− 1)κ4

τ
+

η

ττd

)
.

(2.32)

As we have seen earlier the stability is determined by the first term since
the square root is purely imaginary around criticality. This leads us to the

relaxed stability condition τ <
(

∆κ4 − η
τd

)−1
and therefore with η = 1 and

τ crit = Θτw
ηγκ we get τ <

(
1

τcrit
− 1

τd

)−1
.

Stability condition for synaptic scaling

Here we will derive the critical time constant τ crit for yet another variation
of the triplet rule

dw

dt
=

1

τw

ηw0

κ3
ν2 (ν − κ) +

1

τs

η

κ

(
κ−

(
ν̄m

κm−1

))
w (2.33)
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which uses synaptic scaling to achieve the target rate κ (c.f. (van Rossum
et al., 2000)). With the same transformations as before (i.e. w = w0

γ

(
1− Θ

ν

)
)

we can bring Eq. (2.33) to the form

dν

dt
=

1

τw

ηγ

κ3Θ︸ ︷︷ ︸
≡∆

ν4 (ν − κ) +
1

τs

η

Θ︸︷︷︸
≡Ξ

ν2

(
1−

( ν̄
κ

)m)(
1− Θ

ν

)
(2.34)

which taken together with Eq. (2.5) yields the following Jacobian at the
fixed point

J |ν=ν̄=κ =

(
∆κ4 −Ξ (κ−Θ)m

1
τ − 1

τ

)
(2.35)

with associated eigenvalues

λ1/2 =
1

2

(
∆κ4 − 1

τ

)
±

√
1

4

(
∆κ4 − 1

τ

)2

− Ξ

τ
(κ−Θ)m+

∆κ4

τ
. (2.36)

We can appreciate directly from Eq. (2.36) that the real part of the
largest eigenvalue is lower bounded Re (λ1) ≥ 1

2

(
∆κ4 − 1

τ

)
and therefore we

find that stability requires τ < 1
∆κ4

= τ crit, which is the same condition
as above for the case of metaplastic triplet STDP. However, in the case of
synaptic scaling this stability condition is necessary, but not sufficient. This
we can see in Eq. (2.36) for given n, when Ξ becomes sufficiently small (τs

sufficiently large) eventually we get Re (λ1) > 0, where the background state
loses stability (cf. Fig. 5.3 (B)). Hence, in addition to τ < τ crit there is also
a critical value for τs which can be on a comparable scale like τw, but not
arbitrarily large.
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Chapter 3

Inhibitory Plasticity Balances Ex-
citation and Inhibition in Memory
Networks

This chapter presents the author’s (FZ) contributions to a
manuscript published as Vogels et al. (2011) of which FZ is an
author. In particular FZ contributed Figure 4 to the manuscript
(Fig. 3.2 in the present thesis) and several Supplementary figures,
all of which represent FZ’s original work. That is, FZ performed
all the relevant network simulations and data analysis. Moreover
in the method section of this thesis modified parts of the text
originally written by FZ in the Supplementary material of Vogels
et al. (2011) were included. Tim P Vogels together with Wul-
fram Gerstner supervised the work. Section 3.2.1 constitutes
unpublished work from a follow up study that was performed
independently.

3.1 Introduction

Excitatory and inhibitory input currents received by cortical neurons are
balanced and largely cancel each other (Shu et al., 2003; Wehr and Zador,
2003; Okun and Lampl, 2008; Froemke et al., 2007). This experimentally
observed balance has given rise to numerous theoretical studies of balance
in network models (Brunel, 2000; van Vreeswijk and Sompolinsky, 1996;
Tsodyks and Sejnowski, 1995; Renart et al., 2010; Murphy and Miller, 2009;
Vogels et al., 2005) which give an appealing theoretical explanation for high
trial by trial variability of neural responses (van Vreeswijk and Sompolinsky,
1996).

Since their discovery balanced networks or derivatives thereof have served
as a substrate for a range of theoretical models for rich dynamics (Murphy
and Miller, 2009; Litwin-Kumar and Doiron, 2012), signal transmission (Vo-
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Chapter 3. Inhibitory plasticity in recurrent networks

Figure 3.1 – Schematic of the in-
hibitory STDP rule. Regions lead-
ing to long-term potentiation of the
inhibitory synapse are marked in
red. Net long-term depression is
caused by presynaptic spikes only
(blue). Adapted from Vogels et al.
(2011).

gels and Abbott, 2005; Vogels, 2007; Gewaltig et al., 2001a; Kumar et al.,
2010) and working memory (Roudi and Latham, 2007; Mongillo et al., 2008;
Curti et al., 2004; Amit and Mongillo, 2003b; Compte et al., 2000; Yakovlev
et al., 1998). Most existing models are built on top of the concept of ran-
dom balanced networks, in which initially random connections are shaped
manually and hand tuned to yield the desired network behavior. Only few
studies have embarked on the question of how the underlying connectivity
could arise through synaptic plasticity (Yakovlev et al. (1998); Amit and
Mongillo (2003b); Clopath et al. (2010); see also Chapter 4).

One potential reason for this is that establishing biologically plausible
activity in a balanced state in recurrent networks requires sensible param-
eter choices of synaptic connection weights which are easily compromised
through current models of synaptic plasticity (Morrison et al., 2007; Brunel,
2000; Kunkel et al., 2011; Zenke et al., 2013). The resulting run-away poten-
tiation leads to highly active and synchronous network states which are not
observed in healthy biological systems. Past theoretical studies, however,
have focused on plasticity at excitatory synapses and although experimen-
tally observed (Woodin et al., 2003; Maffei et al., 2006; Woodin and Maffei,
2010; Vogels et al., 2013), plasticity of inhibitory synapses has not been
targeted in theoretical studies before.

Two recent theoretical studies showed (Vogels et al., 2011; Luz and
Shamir, 2012; Vogels et al., 2013) that Hebbian STDP rules at inhibitory
synapses provides a simple explanation for a range of experimentally ob-
served phenomena of balanced synaptic input to single cortical neurons
(Froemke et al., 2007; Wehr and Zador, 2003). We were wondering if in-
hibitory STDP could also provide a potential answer as to how balance
arises in recurrent network models. In particular we were interested if in-
hibitory STDP would establish a balanced state at the network level and
maintain it even if excitatory weights change and cause a local disruption
of this balance.

3.2 Results

To study the behavior of inhibitory STDP in recurrent network models we
implemented a balanced network model consisting of 8,000 excitatory and
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Figure 3.2 – Emergent global balance in networks and cell assemblies through
inhibitory STDP. (A-E) Five snapshots of network activity at different stages in
the simulation. Each snapshot shows (from top to bottom) 1) Instantaneous firing
rates of all neurons laid out on a two dimensional grid. Squares mark designated
sub-populations of neurons of which the spiking statistics were monitored during
the simulation. 2) Spike raster over time of 50 neurons each from red and black sub-
population. 3) Histograms of the coefficient of variation of the ISI distribution from
red and black sub-population. 4) Histogram of pairwise spiking correlations of cells
within the red and the black assembly. (A) Initial network state where excitatory
neurons receive too weak inhibitory input. (B) Same as in (A) showing the network
activity one hour later. (C) Network state as shown before but after introducing
two overlapping Hebbian assemblies into the excitatory weight matrix (red and
blue sub-populations). (D) Network state one hour after the two assemblies have
been introduced. (E) Recall of one of the patterns by injecting additional external
excitatory current into one fourth of red sup-population. See Section B.1 for an
annotated protocol of the entire simulation.
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Figure 3.3 – Schematic of em-
bedding a single cell assembly
into a random network. A sub-
set of existing connections be-
tween excitatory neurons (gray)
is strengthened to form a Heb-
bian cell assembly (black).

2,000 inhibitory neurons with conductance based synapses (cf. Vogels and
Abbott (2005) and Methods). Each neuron in the network received the same
noise-free external input current which alone was sufficient to cause neurons
to spike in the absence of other input. Inhibitory-to-excitatory synapses were
endowed with a spike-timing-dependent plasticity rule in which synapses
potentiate when they experience a pair of pre and a postsynaptic spikes in
close temporal vicinity, but independent of their temporal order (Fig. 3.1).
Presynaptic spikes alone on the other hand cause a depression of the synaptic
weight. This rule can be written schematically as

∆wij = (pre)j × ((post)i − α) . (3.1)

To test whether or not inhibitory STDP is compatible with a global
background state at low activity we initially turned down all inhibition to the
excitatory population. This caused excitatory neurons to fire synchronously
at high rate (Fig. 3.2 (A)). Neural firing was highly regular with values
of coefficient of variation of the inter-spike-interval distribution (CV ISI)
substantially smaller than one (Fig. 3.2 (A)).

The network was then allowed to evolve freely while inhibitory STDP
was active. After one hour of simulated time the network settled into a
low activity and highly asynchronous state in which single cells fire highly
irregularly (Fig. 3.2 (B); cf. Brunel (2000)) due to the highly anti-correlated
excitatory and inhibitory input currents (Fig. B.5 and van Vreeswijk and
Sompolinsky (1996)). The transition from synchronous regular activity to
asynchronous irregular activity was robust to parameter changes and did
not depend on fine tuning (see Appendix B.2) .

Excitatory synapses in biological neuronal networks are plastic (Bliss and
Lømo, 1973; Markram et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001)
and change through experience. At the level of individual neurons synaptic
plasticity can easily disrupt the balance between excitation and inhibition
and cause regular firing as well as elevated firing rates. We were wonder-
ing if inhibitory STDP could stabilize the balanced state despite substantial
changes to the excitatory connections. To simulate one possible outcome
of such plastic changes we manually imprinted two overlapping Hebbian
assemblies into the excitatory weight matrix by strengthening the existing
connections between the neurons within the same assembly (Fig. 3.3). This
change immediately caused assembly neurons to fire at elevated firing rates
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with regular spike trains (CV ISI smaller than one) and with high syn-
chrony (Fig. 3.2 (C)). The rest of the network was only mildly affected by
the change. The CV ISI of neurons outside one of the assemblies was ele-
vated, while spiking correlations were comparably low with a mean around
zero (Fig. 3.2 (C)).

After one hour of ongoing inhibitory STDP the network settles again
to a low activity asynchronous irregular background state similar to the
one observed before the cell assemblies were introduced (Fig. 3.2 (D)). Since
excitatory connections are not plastic the assembly structure remains un-
changed in the excitatory-to-excitatory weights, but their existence is not
revealed from the network activity.

To serve as an associative memory it has to be possible to retrieve the
information stored in a Hebbian cell assembly. We tested if it was possible to
recall the memories stored in our network by externally stimulating a subset
of neurons in one of the two assemblies. This partial cue of the previously
stored memory lead to the activation of the other neurons within the same
assembly (Fig. 3.2 (E)). During recall cells not being directly stimulated
externally, exhibited increased CV ISI values while correlations between
cells inside the assembly were still low (Fig. 3.2 (E)). After stimulation the
activity inside the assembly dropped back to baseline almost immediately.
Recall was not limited to one assembly, but the second assembly could be
recalled similarly (Fig. B.6 (F)).

We were wondering whether or not the formed assemblies could be acti-
vated at the same time. To achieve this we predominantly stimulated cells
from the overlapping population of both cell assemblies. This caused either
assembly to display elevated activity similar to what was observed for a
single assembly (Fig. B.6 (G)).

The stimulation of background neurons had a small effect on the over-
all network dynamics, but slightly decreased activity of cells taking part
in the two cell assemblies (Fig. 3.4 (A)). The stimulation of cells within ei-
ther assembly, however, caused assembly wide elevated firing rates also in
the unstimulated cells. The increase of firing rate within the unstimulated
part of the assembly was nearly linear in the number of stimulated neurons
(Fig. 3.4 (B,C)). When stimulating the overlap of both assemblies the firing
rate of both assemblies increased close to linearly with approximately half
the slope compared to the case were non-overlapping cells were stimulated
(Fig. 3.4 (D)).

In all cases the brief stimulation of a subset of neurons taking part in a
given cell assembly caused an activation of the remaining cells. Prolonged
simulation over several seconds caused inhibitory plasticity to decrease firing
rates inside of the respective assembly which resulted in a negative shadow
pattern in the activity upon removal of the stimulation (not shown).
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Figure 3.4 – Cells in the assembly respond approximately linearly to external
stimulation. (A-D) Top: Schematic of stimulation paradigm. Bottom: Firing rate
in neurons within the three sub-populations which do not receive additional external
input for different numbers of neurons being stimulated. (A) Stimulation of cells
inside the control population. (B) Stimulation of cells in the red assembly. (C)
Stimulation of cells in the blue assembly. (D) Stimulation of cells in the overlap. At
? the stimulation has spill-over into the blue assembly which breaks the symmetry.

3.2.1 Attractor dynamics and inhibitory synaptic plasticity

In the simulations discussed so far the activity of a cell assembly dropped
back immediately to baseline at the offset of an external partial stimulation
of part of the assembly. It has been suggested in a series of theoretical
works that cell assemblies could give rise to persistent activity (Hopfield,
1982; Amit and Brunel, 1997b,a; Gerstner and van Hemmen, 1992) and
therefore form the neural substrate for working memory (Fuster and Jervey,
1982; Goldman-Rakic, 1995).

We were wondering if this behavior could be found in networks with
stronger recurrent feedback. To do so we created a larger network model
consisting of 250,000 integrate-and-fire neurons (200,000 of which are exci-
tatory, see Methods). Similar to the protocol shown in Figure 3.2 we first
allowed inhibitory STDP to drive the entire network to settle in a low ac-
tivity background state. Again we introduced ad-hoc three different cell
assemblies into the network by using the following simple modification rule

wexc
ij → wexc

ij +
∑
µ

γµi Θ
(
γµj

)
(3.2)

in which Θ stands for the step function and γµi were the normalized pixel
intensities from three flattened gray scale images of the Nobel laureates of
Physiology or Medicine 1963: Hodgkin, Huxley and Eccles.

The resulting excitatory connectivity caused the network to initially ex-
hibit synchronous activity (Fig. 3.5 (a)) of all three graded activity patterns
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Figure 3.5 – Attractor dynamics of graded activity patterns in a large recurrent
spiking network model with inhibitory STDP. Different snapshots of the activity
of all excitatory cells laid out on a 2 dimensional grid. (a) Initial state. All three
graded memory patterns previously wired into the excitatory weight matrix are
active synchronously. Patterns from left to right: Huxley, Hodgkin and Eccles.
(b) The same network after 5 minutes of simulated time. (c) Background state
after burn-in period. (d) 4 snapshots of spontaneous recall of single patterns and
background activity (bottom left). While the Hodgkin attractor is active, a faint
shadow pattern of the the previously active Huxley pattern is visible.

57



Chapter 3. Inhibitory plasticity in recurrent networks

Figure 3.6 – Schematic of the input-
output curve with bistable behavior in
a cell assembly with inhibitory plastic-
ity (ISP) enabled. When activity in a
cell assembly is too high – for instance
due to the loss of stability of the back-
ground state – inhibitory plasticity drives
the system back towards the region of bi-
stability.
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and the rest of the network. After a short period of ongoing inhibitory
STDP all three patterns started to switch rapidly with sometimes more
than one pattern being active (Fig. 3.5 (b)). This burn in period was fol-
lowed by a period of background activity (Fig. 3.5 (c)) which is reminis-
cent of (Fig. 3.2 (D)). In contrast to our observations in the 10, 000 cell
network, however, patterns activated spontaneously without external stim-
ulation (Fig. 3.5 (d)) and deactivated consequently after several seconds.
Patterns previously active left behind a negative shadow in the network ac-
tivity (Fig. 3.5 (d)). While this shadow persisted patterns were less likely to
activate again. The transitions to activity were taking place spontaneously,
but could also be induced by a transient partial external stimulation (not
shown). However, activation of one of the attractors was in most cases
unsuccessful immediately after it had been activated recently.

3.3 Discussion

In this chapter we illustrated how the balanced state can emerge naturally in
networks in which inhibitory synapses obey a simple Hebbian STDP learn-
ing rule. Importantly balance does not only emerge initially but is also
maintained in the face of perturbations as they could be caused through
synaptic plasticity at excitatory weights. To that end we demonstrated that
the ad-hoc addition of two overlapping Hebbian cell assemblies to the exci-
tatory weights breaks the balanced state locally inside the assemblies and
causes them to be permanently active. We have seen that inhibitory plas-
ticity efficiently compensates for this broken balance and re-establishes the
global AI state again in which the cell assemblies are hardly distinguishable
from the network activity alone unless they are being recalled by dint of an
external stimulation to part of the stored assembly.

While in a small network the externally activated assembly responds near
linearly in stimulus strength and does not display delay activity, a larger
network able to provide stronger recurrent feedback within a cell assembly
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can give rise to multi-stable dynamics in which cell assemblies spontaneously
activate in the absence of external stimulation. These dynamics were mostly
autonomous, but could also be induced through external stimulation.

An intuitive explanation for this behavior comes from considering the
input-output relation of a given cell assembly within the network in a mean-
field framework (Amit and Brunel, 1997b). In this framework assembly
dynamics can be seen as solving a set of self-consistent equations x = F ( xw +
rest of the network) with the input-output non-linearity of the cell assembly
F , the recurrent weight strength w and the effective output of the assembly
neurons x and additional excitatory and plastic inhibitory input from the
rest of the network. To yield bi-stable behavior the input output relation
has to have multiple fixed points, i.e. the straight line has to have multiple
intersection points with the non-linear function (Fig. 3.6). Satisfying this
relationship requires fine-tuning (Amit and Brunel, 1997b). If the tuning
is off only by a few percent and the recurrent feedback is too strong, the
dynamics only have a single fixed point at high firing rates which causes the
assembly to be permanently active.

In our simulations we chose the target rate ρ0 of the inhibitory learning
rule such that it can only be satisfied by the cell assembly in the bi-stable
regime (Fig. 3.6). This ensures that inhibitory STDP fine-tunes cell assem-
blies into the vicinity of the bi-stability. If, however, the activity in the
assembly is too high on average because ’attractor-switching’ is not trig-
gered frequently enough through external stimuli, inhibition into this pat-
tern slowly increases until the upper stable fixed point is lost (Fig. 3.6). At
this point the cells in the assembly drop to their low activity state (possibly
leaving behind a shadow pattern; cf. 3.5 (d)) which now lies below the tar-
get rate ρ0 of inhibitory plasticity. Consequently inhibition to the recently
deactivated assembly is henceforth decreased until either the assembly is
activated externally or eventually spontaneously when the lower fixed point
is lost. Since LTD in our inhibitory STDP learning rule is independent of
the postsynaptic rate (cf. Eq. (3.6)) the up-regulation is slower than the
down-regulation (LTP is linear in the postsynaptic firing rate).

In summary the overall dynamics of each assembly seem to evolve on a
slow limit cycle around the region of bi-stability. The mechanism gives an in-
tuitive explanation why it is more difficult to reactivate recently deactivated
assemblies and why assemblies that were inactive for long spontaneously
activate.

While inhibitory STDP offers a step forward in terms of the amount of
tuning required to create bistability in a balanced network, the mechanism
does not offer a satisfying solution to memory formation and recall. From
our daily life experience we know that some memories are not being recalled
for long while others at times may be used frequently and in quick succession.
However, if each memory assembly was to live on a slow limit cycle it would
require each neuron to be in the active state of a cell assembly on average
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the same amount of time.
Another open question is how inhibitory plasticity interacts with ongoing

excitatory plasticity. While inhibitory plasticity can act on a similar time
scale as excitatory plasticity one could think of it as a rapid compensatory
mechanism able to stabilize network dynamics (Zenke et al. (2013); Chap-
ter 2). There is a catch, however. Inhibitory plasticity does not reverse LTP
of excitatory synapses. This leads to a situations in which excitatory and
inhibitory weights grow in equal proportion (and therefore maintaining an
overall balance) until one of them hits an upper limiting bound or worse: a
point at which the resulting correlations in sub-threshold input are strong
enough to cause synchronization in the entire network at which point the
asynchronous irregular balanced state is lost. There is currently a range
of studies underway which are looking at this potential role of inhibitory
plasticity.

Chapter 4 offers a different solution to the problem which involves het-
erosynaptic plasticity and the modulation of inhibitory plasticity by global
secreted factors.

3.4 Methods

The network model we used is based on a network by Vogels and Abbott
(2005). The model consists of 8000 excitatory and 2000 inhibitory integrate-
and-fire neurons (Section 3.4.1) which are connected randomly with a con-
nection probability of 2%. Following Vogels and Abbott (2005) the initial
excitatory weights were chosen as ḡ = 3nS. Inhibitory-to-inhibitory weights
were by a factor 10 stronger. To create assembly structure within the exci-
tatory weight matrix we potentiated existing synaptic weights by multiply-
ing their initial synaptic strength by χ = 5 (unless mentioned otherwise).
Inhibitory-to-excitatory synapses obeyed a symmetric STDP learning rule
(Section 3.4.2). A complete summary of the model description and param-
eters can be found in tabular form in Appendix B.4.

3.4.1 Neuron Model

For all simulations we used a leaky integrate-and-fire model with conduc-
tance based synapses (Vogels and Abbott, 2005). The voltage Vi of neuron
i evolves according to the following differential equation

τ
dVi
dt

= (V rest− Vi) +
(
gE
i (t)(V E− Vi) + gI

i(t)(V
I− Vi) + Ib

)
× 1

gleak
. (3.3)

with the resting potential V rest = −60mV, the excitatory reversal potential
V E = 0 and the inhibitory reversal potential V E = −80mV. A spike is
triggered when the voltage reaches a threshold ϑ = −50mV, after which the
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membrane potential remains clamped at V rest during a refractory period of
τ = 5ms. We further fixed gleak = 10nS and assumed a membrane time
constant of τ = 20ms (see Appendix B for a detailed tabular listing of all
parameters).

When a neuron receives an excitatory presynaptic spike the conductance
variable gE

i (t) makes a state transition gE
i (t) → gE

i (t) + ∆gE
ij or gI

i(t) →
gI
i(t) + ∆gI

ij for an inhibitory spike respectively. In the absence of spikes
both quantities follow an exponential decay

τE
dgE
i

dt
= −gE

i and τI
dgI
i

dt
= −gI

i (3.4)

with synaptic time constants τE = 5 ms and τI = 10 ms. The conductances
∆gij are defined as ∆gij = ḡWij where ḡ is the base weight which is fixed
while Wij is plastic for inhibitory-to-excitatory (see Section 3.4.2) or static
for other connections. In addition to synaptic input all neurons received
constant current input Ib = 200pA which is sufficient to drive an isolated
neuron without additional synaptic input to spike. All simulations were
written in C++ and differential equations were integrated using the forward
Euler method with a 0.1ms time step.

3.4.2 Inhibitory STDP model

We implemented a symmetric STDP rule in which co-occurring pre and
postsynaptic spikes result in synaptic potentiation and presynaptic spikes
alone cause depression (cf. Fig. 3.1). This learning rule was implemented
using synaptic traces which are defined as

dzi
dt

= − zi
τSTDP

+ Si(t) (3.5)

in which τSTDP is the time constant which determines the timescale of STDP
and Si(t) is the associated spike train Si(t) =

∑
t′ δ(t − t′i) where the sum

runs over all spike times t′i of neuron i. The STDP learning rule acting on
the variables Wij can be written in the compact form

d

dt
Wij = +η (zi − α)Sj(t) + ηzj Si(t) (3.6)

where η is a learning rate and the constant α = 2ρ0τSTDP is called the
depression factor in which ρ0 takes the role of a target firing rate. Allowed
values for inhibitory weights Wij were limited to the range [Wmin,Wmax] (for
parameter values see Table D.6).

3.4.3 Large network model

The large network model as it was used to generate Figure 3.5 was an up-
scaled version of the network used before. In particular this network con-

61



Chapter 3. Inhibitory plasticity in recurrent networks

sisted of 200,000 excitatory and 50,000 inhibitory neurons. Most parameters
and also the connection probability were unchanged at 2% which resulted
in approximately 4,000 excitatory recurrent inputs to each network neuron.
To compensate for the increased excitatory drive each neuron receives, we
reduced the overall synaptic strength to ḡ = 0.035nS (was ḡ = 3nS in the
10,000 cell network). Moreover we used a lower learning rate of η = 1×10−5.

3.4.4 Data analysis and measuring spike-spike correlations

To characterize the global state we monitored correlations between indi-
vidual spike trains as well as the population firing rate (the average of
firing rates across the network), and the population rate’s standard devia-
tion σRate, as well as average membrane potentials, and inter-spike-intervals
(ISIs). Irregular asynchronous network activity which is often thought to
be representative for cortical dynamics has a roughly constant population
firing rate and often exhibits low spiking correlation values (Renart et al.,
2010) while coefficients of variation of the inter-spike-intervals (CV ISI) are
close to one.

To calculate the distributions of the pairwise spiking correlations (Renart
et al., 2010) and the CV ISI from neurons within designated sub-populations
we collected spiking data from all 392 neurons within each memory pattern
and from the control group. Following Renart et al. (2010) we computed
the spiking correlation coefficient Xij between spike trains Si(t) and Sj(t).
We first constructed filtered spike trains Fi defined as

Fi(t) = Si(t) ∗K(t) , (3.7)

in which the spike train Si =
∑

f δ(t − t
f
i ) is convolved with a symmetric

bi-exponential kernel K(t) (with
´∞
−∞K(t)dt = 0) defined as

K(t) =
1

τ1
exp

(
−|t|
τ1

)
− 1

τ2
exp

(
−|t|
τ2

)
(3.8)

with τ1 = 50 ms and τ2 = 4 × τ1. The unnormalized covariance Vij =∑
t Fi(t)Fj(t) over all discrete times t then leads to correlation coefficients

Xij =
Vij√
ViiVjj

. (3.9)

We calculate ∼38,000 pairwise correlation coefficients between the fil-
tered spike trains of a given group (for all recall experiments we only stimu-
lated a set of neurons that was disjunct to the neurons used for computing
the spike train statistics.). All computation was done in discrete time with
a resolution of dt = 1 ms.
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Chapter 4

Formation and recall of cell assem-
blies in recurrent networks of spik-
ing neurons: multiple roles of plas-
ticity

Authors: Friedemann Zenke, Everton Agnes and Wulfram Gerst-
ner

At the time of writing of this thesis the material presented in
this chapter is being prepared for submission to a peer-reviewed
journal. Friedemann Zenke was the lead investigator in this
study and responsible for all main areas. In particular he per-
formed all simulations and analysis and created the figures. Wul-
fram Gerstner is supervising the project and wrote most of the
introduction and parts of the results section. Everton Agnes
participated initially in discussions on the learning rule.

4.1 Introduction

The concepts of cell assembly and Hebbian learning (Hebb, 1949), have
inspired generations of experimental (Bliss and Lømo, 1973; Artola et al.,
1990; Markram et al., 1997; Martin et al., 2000; Abbott and Nelson, 2000;
Bi and Poo, 2001; Bliss et al., 2003; Caporale and Dan, 2008; Lisman, 2003;
Sjöström et al., 2008) and theoretical work (Grossberg, 1969; von der Mals-
burg, 1973; Hopfield, 1982; Bienenstock et al., 1982; Song et al., 2000; Morri-
son et al., 2008; Gerstner et al., 1996; MacKay and Miller, 1990) (for a review
see (Markram et al., 2012)). A cell assembly, loosely formulated as a group
of neurons with strong connections amongst each other, can be interpreted
as a functional circuit of brain activity. Delay activity of neurons during
working memory tasks (Fuster and Jervey, 1982; Goldman-Rakic, 1995) or
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recognition of abstract items (Quiroga et al., 2005; Bathellier et al., 2012)
can be interpreted as the activation of such a cell assembly during memory
recall.

While models of cell assemblies for fixed, preset, connectivity can be
readily constructed (Hopfield, 1982; Gerstner and van Hemmen, 1992; Amit
and Brunel, 1997a; Amit et al., 1985; Mongillo et al., 2008), the question
of whether Hebbian learning rules can be used to form and maintain such
assemblies in a stable fashion has, so far, not found a satisfying answer
(Rochester et al., 1956; Amit and Fusi, 1994; Fusi, 2002; Mongillo et al.,
2003; Fusi and Abbott, 2007; Amit and Mongillo, 2003b). The reasons for
this failure of models to create functional memory assemblies in networks of
spiking neurons with a single biologically plausible synaptic plasticity rule
are manifold. First, neurons in the brain come in different varieties, and ex-
perimental forms of plasticity depend on the type of neuron and connection
(Abbott and Nelson, 2000). Second, plasticity manifests itself in multiple
forms including rate-dependent, (Bliss and Lømo, 1973), voltage-dependent
(Artola et al., 1990), and spike-timing dependent (Markram et al., 1997;
Bi and Poo, 1998; Sjöström et al., 2001; Caporale and Dan, 2008; Sjöström
et al., 2008) homosynaptic as well as heterosynaptic (Chistiakova et al., 2014;
Lynch et al., 1977) plasticity. Third, induction of synaptic plasticity needs to
be distinguished from processes of synaptic consolidation and maintenance
(Lisman, 1985; Frey and Morris, 1998). Finally, nonstandard forms of plas-
ticity such as structural plasticity (Stepanyants et al., 2002; Trachtenberg
et al., 2002), short-term plasticity (Markram and Tsodyks, 1996; Abbott
et al., 1997) or homeostatic synaptic changes (Turrigiano et al., 1998; Turri-
giano and Nelson, 2000) complicate the picture.

Here we show that a combination of homosynaptic Hebbian plasticity
with heterosynaptic and homeostatic processes gives rise to the stable for-
mation of cell assemblies, and that these cell assemblies do not degrade
or inflate during memory recall. In order to distinguish different forms of
plasticity in our model, we use the following terms and criteria. First, we
call contributions to synaptic plasticity that depend only on variables of the
postsynaptic neuron, but not on those of the presynaptic neurons, ’heterosy-
naptic’ whereas manifestations of synaptic plasticity that depend jointly on
pre- and postsynaptic activity are called ’homosynaptic’; similarly, a change
of the synapse which only depends on transmitter release, but not on the
state of the postsynaptic neuron will be called ’transmitter-triggered’. By
definition, heterosynaptic or transmitter-triggered plasticity is non-Hebbian.
Second, our terminology takes the time scale into account on which synaptic
changes manifest themselves. We refer to slow processes that show up on
a time scale of tens of minutes or hours as ’homeostatic’ in order to con-
trast them with ’induced’ plasticity caused by typical protocols (lasting a
few seconds to tens of seconds) for induction of long-term potentiation or
depression. Third, a mathematical rule of synaptic plasticity is considered
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as ’local’ if it only depends on the activity of the presynaptic and the state
of the postsynaptic neuron, but not on any other neuron. A local rule can be
under the influence of a global factor (Crow, 1968; Izhikevich, 2007; Pawlak
et al., 2010) such as the neuromodulator dopamine (Schultz et al., 1997) or
other secreted factors (Turrigiano, 2012). In this terminology, our model of
plasticity at excitatory synapses is local whereas that at inhibitory synapses
is under the influence of a global factor. Note that a ’local’ rule (e.g., (Oja,
1982; Chistiakova et al., 2014)) can give rise to ’heterosynaptic’ effects.

4.2 Results

We simulated a network of 4096 excitatory and 1024 inhibitory randomly
connected integrate-and-fire neurons containing a cell assembly of 400 exci-
tatory neurons. The assembly is defined by intra-assembly synapses that
are initialized at stronger values than those of the rest of the network
(Fig. 4.1 (a,b)). In the absence of plasticity, the network functions as a
working memory, exhibiting delay activity (Fig. 4.1 (c,d) consistent with
earlier findings (Amit and Brunel, 1997a; Amit and Tsodyks, 1991; Gerst-
ner and van Hemmen, 1992; Treves, 1993; Mongillo et al., 2008), but when
we switch on a standard homosynaptic model of spike-time plasticity (Bi-
enenstock et al., 1982; Pfister and Gerstner, 2006), the activity of neurons
within the assembly, characterized by their firing rates, increases dramati-
cally, followed by a slower increase of neuronal activity outside the assembly
(Fig. 4.1 (e)).

The biologically unrealistic increase of firing rates in this, and similar
(Song et al., 2000; Senn et al., 2001; Shouval et al., 2002), homosynaptic
Hebbian models results from an interaction of the network dynamics with
synaptic plasticity. The change of synaptic weight from a presynaptic neuron
j to a postsynaptic neuron i in standard homosynaptic plasticity models such
as the classic Bienenstock-Cooper-Munro rule (Bienenstock et al., 1982) or
modern NNMDA-dependent (Shouval et al., 2002), spike-timing dependent
(Senn et al., 2001; Pfister and Gerstner, 2006) or voltage-dependent (Clopath
et al., 2010) variants requires that the activity (pre)j of the presynaptic neu-
ron is multiplied with the activation of some postsynaptic variables (post)i
and can be summarized as ∆wij ∝ (pre)j × (post)i×F ((post)i− θi), with a
function F that vanishes if (post)i = θi, e.g. F (x) = x. It is a homosynaptic
rule, because a synapse that is not presynaptically activated, (pre)j = 0 does
not change. If presynaptic activity occurs (pre)j > 0, then it depends on
the present state of the postsynaptic neuron whether the weight changes up-
ward or downward. Even in the presence of presynaptic activity, the weight
change is zero if the postsynaptic variable is zero (post)i = 0 or equal to the
threshold θi. Activity values where the weight does not change are called
fixed points of the synaptic dynamics.

65



Chapter 4. Memory formation and recall
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Figure 4.1 – Classic synaptic learning rules fail to maintain stable cell assemblies
in recurrent neural networks. (a) Schematic of a recurrent network with random
sparse connectivity and prior to any experience (näıve; left) and with embedded
cell assembly, potentially formed through experience dependent plasticity. (b) 2D
histogram (40× 40 binning) of the excitatory recurrent synaptic weights. Synaptic
weights within the 400 cell assembly are preset to be stronger than other weights
in the network (zoom). (c) Spike raster from a recurrent network model with a
single embedded cell assembly. At * a 300ms external stimulation is applied to
the cells within the assembly which triggers persistent activity. (d) Population
rate of cells outside of the cell assembly (black) and inside the assembly (gray).
(e) Same as in (d), but for a plastic network with triplet STDP. Activity inside
the cell assembly (red) explodes rapidly and the activity of the other cells (black)
follows more slowly. (f) 2D histogram of the synaptic weight matrix at the end of
100s of simulated time. Many presynaptic connections into the assembly have been
potentiated. (g) Solutions of a nonlinear system of equations describing a stationary
network state can be found graphically as the intersection between the diagonal
(black) and the effective input-output-curve of neurons within the assembly (red).
For the näıve network there exists only one stable solution at low firing rate (light
red line). Experience dependent synaptic change can alter the network response
such that three solutions exist (red line). Stable solutions are marked by dotted
vertical lines. (h) Schematic of rate dependence of triplet STDP or BCM (blue).
At low (high) postsynaptic activity synaptic long-term depression (potentiation)
dominates. The plasticity rule has a fixed point at 10 Hz which is not congruent
with the fixed points of the network dynamics (cf. g).
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The synaptic dynamics interact with the neuronal dynamics of cell as-
semblies in a memory network. During memory recall, the assembly is
strongly active while background neurons (i.e., those not participating in the
assembly) show weak spontaneous activity (Fig. 4.1 (c)). In the presence of
a homosynaptic plasticity rule with the above structure, the spontaneous ac-
tivity of background neurons and the higher activity of the assembly neurons
leads to an increase of all those synapses projecting into an assembly neuron
i (Fig. 4.1 (f)). This finding can be understood in the framework of graph-
ical network analysis (e.g. (Amit and Brunel, 1997b)) of working memory
models. During memory recall, assembly neurons receive input from neu-
rons of the same assembly. Input firing rates are transformed into output
firing rates by an effective gain function, closely related, but not identical to,
the neuronal f-I curve. Stable memory recall requires that the rates of input
neurons (i.e. cells in the assembly) and output neurons (other cells in the
same assembly) match (Fig. 4.1 (g)). Since memory recall should not change
the contents of the memory, the synaptic dynamics should be at one of its
fixed points discussed above. In general, there is a mismatch between the
network dynamics and synaptic dynamics (Fig. 4.1 (h)). Matching the fixed
points by a shift of the threshold θ (Bienenstock et al., 1982) works only if
the shift is faster than the dynamics of induced synaptic plasticity (Zenke
et al., 2013) and is therefore inconsistent with the notion of homeostasis as
a slow adaptation towards a physiologically desired state.

Since homeostatic mechanisms are too slow, we added a simplified de-
scription of heterosynaptic and transmitter-triggered plasticity to our ho-
mosynaptic plasticity rule (see Methods). Similar to earlier models of het-
erosynaptic plasticity (Chen et al., 2013; Chistiakova et al., 2014), all syn-
apses j onto neuron i are subject to change whenever the postsynaptic vari-
able (post)i reaches a high value. The direction of change depends on the
present value wij of the synaptic weight which is consistent with exper-
iments of tetanic burst induction ((Chen et al., 2013); cf. Fig. 4.2 (a)).
Our model of transmitter-triggered plasticity is proportional to presynaptic
activity (pre)j and helps to stabilize neuronal firing rates (Kempter et al.,
2001). Combination of all three terms leads to plasticity induction according
to

∆wij ∝ (pre)j × (post)i×F ((post)i− θi)−β (wij − w̃ij)× (post)4
i + δ(pre)j .

(4.1)
Both the reference weight w̃ij and, in simulations with an additional home-
ostatic mechanism, also the threshold θi change on the time scale of slow
homeostatic processes, while the other model parameters, in particular β
and δ, are fixed (see Methods). The power of four in the heterosynaptic
term is a convenient way to implement a non-linear threshold-like sensitiv-
ity to the postsynaptic activity. Analysis of the plasticity model shows that
the stable points of the synaptic dynamics self-adjust to match that of the
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Figure 4.2 – Heterosynaptic plasticity can create additional fixed points for the
learning rule. (a) Bidirectional non-Hebbian plasticity in our model. Plasticity
is induced by postsynaptic tetanization as described in Chen et al. (2013). At
time t = 0 the postsynaptic neuron is forced to spike (3 burst trains at 1/60 Hz,
10 bursts per train at 1 Hz, 5 spikes per burst at 100 Hz). Tetanization increases
some of the weights (i), while other weights decrease (ii) or remain unchanged (iii).
(b) Schematic of input-output relationship of a cell assembly (top) and postsynaptic
rate dependence of triplet STDP with heterosynaptic plasticity for three different
values of the synaptic weight (bottom). Stable (unstable) fixed points are marked
with dotted (dashed) vertical lines. (c) Mean firing rate over time of a single postsy-
naptic integrate-and-fire neuron with plastic synapses (triplet STDP and heterosy-
naptic plasticity). The postsynaptic neuron receives simultaneous Poisson input
via an active pathway (100 synapses at 10 Hz) and a control pathway (100 synapses
at 1 Hz, initial weight wctl

0 = 0.1). Different colors signify different initial weights in
the active pathway. (d) Temporal evolution of the average synaptic weight. Same
color code as in (c). Active pathway (solid lines). Control pathway (dotted lines).
(e) Mean firing rate of the same neuron as in (d) after 600s of simulated time for
different values of the plasticity parameter β. Black (red) data points are from
simulations with initially lower (higher) synaptic afferent weights. (f) Schematic
of simulation of a single integrate-and-fire neuron receiving spatiotemporally corre-
lated input. (g) Simulation results set-up described in (f). Top panel: Evolution of
the synaptic weights. Middle panel: Spike raster of the input spike trains. Bottom
panel: Mean firing rate of the postsynaptic neuron over time. After 100s the input
spike trains follow a Gaussian profile with random mean that is shifted randomly
at random intervals.
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network dynamics (Fig. 4.2 (b) and Section 4.4.5). To confirm stability in
simulations we first stimulated a single postsynaptic neuron with Poisson
spike input from 100 presynaptic neurons at 10 Hz, while 100 other presy-
naptic neurons were firing at 1 Hz. Depending on the initial postsynaptic
activity, the firing rates stabilize at two different values (Fig. 4.2 (c)). Im-
portantly, synaptic weights do not saturate, but stabilize at different levels
depending on their pathway and the postsynaptic firing rate. The bista-
bility of postsynaptic activities can be found over a broad range of model
parameters β (Fig. 4.2 (e)) or δ (data not shown). When stimulated with a
localized stimulus which jumps on average once per second, the postsynaptic
neuron develops a localized receptive field (Fig. 4.2 (f,g)), similar to earlier
models (Bienenstock et al., 1982; Clopath et al., 2010).

The plasticity model of excitatory synapses was then implemented in the
random network of excitatory and inhibitory neurons (Fig. 4.5 (a)) where it
was combined with a model of inhibitory plasticity which was subject to a
global modulating factor (Fig. 4.5 (b); see Methods). Each excitatory neu-
ron received input from excitatory and inhibitory neurons in the network,
but also from a small patch of sensory neurons which defines the spatial
location of its receptive field (Fig. 4.5 (c)). All excitatory and inhibitory
synapses were initiated close to the same reference value w0, but evolved
thereafter freely according to the plasticity rules described above. The net-
work was stimulated by applying repeatedly and stochastically one of four
possible full-field input patterns (Fig. 4.5 (d,h)). Plasticity induced the de-
velopment of spatially structured feature detectors within the receptive fields
(Fig. 4.4 (b-d,f)) and, in parallel, to the development of strongly connected
assemblies in the lateral excitatory connections (Fig. 4.4 (e)) which is rem-
iniscent of recent experimental findings by Ko et al. (2013). However, in
the present case recurrent connections grow strong enough, that two hours
after the start of the stimulation paradigm, the network exhibits selective
delay activity after a brief stimulation of one of the patterns (Fig. 4.4 (h)).
Neurons that participate in the assembly exhibit a broad range of firing
rates during delay activity (Fig. 4.4 (i)) while background neurons have a
rate around 1 Hz or less. There are some neurons which respond to none
of the patterns (Fig. 4.4 (b)), suggesting that there is a ’reserve’ pool of
neurons that could become sensitive to a novel pattern not included in the
stimulation paradigm.

To check whether recall is associative, we stimulated the network with
partial input by occluding to three quarters of the input field. In all cases, we
found activation of the appropriate assembly corresponding to the partial in-
formation, indicating memory recall from partial cues (Fig. 4.5 (a,b)). Com-
pletely novel stimuli, unrelated to those previously encountered or a know
pattern combined with partially wrong information could initiate memory
recall of any pattern they shared overlap with (Fig. 4.5 (c)).

Once triggered the delay activity was stable over extended periods of
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Figure 4.3 – Formation of cell assemblies and stable working memory states.
(a) Schematic of the spiking network model. (b) Schematic of the input paradigm.
(c) Schematic of the inhibitory STDP learning rule. (d) Top panel: Spike raster
of the network activity at the beginning of a simulation. The raster shows 1024
excitatory neurons from the network. Colored bars on top indicate stimulation
times and stimulus identity. Bottom panel: Population firing rate over time of neu-
rons in assemblies coding for the respective stimuli as determined at the end of the
simulation. (e) Histograms of the firing rate and the coefficient of variation of the
inter-spike-intervals (CV ISI) of neurons in the network. (f) Same as (d) after about
5min of simulated time. (g) Same as (d,f) after about 30 min of simulated time.
(h) Same as (d,f,g) after about 2h. Note the larger time scale and the increased
mean stimulation interval TOff =20s. For clarity only every fourth spike is shown.
Black range indicates data range used for spike statistics in (i). (i) Histograms of
firing rates and CV ISI in the network during the interval marked in (h).
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Figure 4.4 – Formation of cell assemblies and stable working memory states (con-
tinued). (a) Histogram of overall stimulation counts for the four different stimuli.
Error bars: Square root of respective count corresponding to expected count varia-
tions for randomly chosen stimuli. (b) Bar plot illustrating the relative fraction of
cells selective for a given stimulus. Black: No preference. (c) Matrix representation
of the overlap between pairs of input patterns. (d) Same as (l), but for observed
stimulus evoked network activity after learning. Numbers in selected fields are
given in percent of the maximum value. (e) Mean weight strength of the recurrent
weights between neurons with different stimulus preference (t = 1h). (f) Receptive
fields with respect to external input of 36 randomly chosen network neurons after
learning. Points represent existing connections and their position in the 2d input
space. Color encodes the connection strength. Four zoom-ins on representative
examples. Initial state for one neuron plotted for reference (box).
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time, although, spontaneous state transitions could occur occasionally. We
were wondering if the addition of a slow adaption current could slowly desta-
bilize the recall states over time. To that end we added a slow adaption
mechanism on a timescale of 20s, similar to what has recently been reported
for cortical neurons by Pozzorini et al. (2013), which caused rates inside
an active cell assembly to change slowly over time and spontaneous state
transitions to occur (Fig. C.7).

In the current framework the formation and recall of cell assemblies was
dependent on the a sensible initial choice of afferent weights. If the weights
were chosen too weak initially, not enough neurons reached stimulus evoked
activity above the LTP plasticity threshold (Fig. C.5 (a)). Consequently
no assembly structure was formed. In classical models of plasticity this
problem is avoided by introducing a mechanisms of homeostatic metaplas-
ticity (Abraham and Bear, 1996) which lowers the plasticity threshold when
neuronal activity is low over an extended period of time (Bienenstock et al.,
1982; Pfister and Gerstner, 2006). By adding a moving threshold, our model
gained the ability to form cell assemblies even when the initial weights were
weak (Fig. C.3) which showed similar recall behavior (Fig. C.4) to the case
discussed above (cf. Fig. 4.5).

4.2.1 Effect of impaired individual forms of plasticity

We have argued that an existing assembly structure strong enough to sup-
port delay activity cannot be stable under triplet STDP alone (cf. Fig. 4.1
(c)) and proposed that heterosynaptic plasticity manifested as a postsynap-
tic burst detector can restore stability. However, this was so far only shown
in a network with a preexisting assembly. We confirmed that indeed no
stable assembly structure could be learned by deactivating heterosynaptic
plasticity (β = 0) in our model (Fig. C.5 (b)).

To closer investigate the role of the other plasticity mechanisms, we
specifically deactivated inhibitory synaptic plasticity in the model and re-
peated our training protocol (cf. Fig. 4.3). Doing so does not prevent the
model to develop delay activity. However, the overall activity inside the
assembly shifted to notably higher rates (Fig. C.6(a)).

We performed similar simulations in which transmitter triggered plas-
ticity was deactivated (δ = 0) and found that a large fraction of cells in
the network falls silent and does not fire a single spike during one hour of
simulated network activity (Fig. C.6(b)).

4.2.2 Role of consolidation dynamics

To study the role of consolidation dynamics (Section 4.4.2.3) we devised a
simulation protocol which allows to conveniently follow the temporal evo-
lution of external and internal connectivity in the network as it was used
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Figure 4.6 – Block of consolidation causes cell assemblies to decouple from external
input. (a,c,e) Control network with consolidation. (b,d,f) Network in which all
consolidation dynamics are blocked. (a) Initial state of control network. Histogram
of a 2000× 2000 neuron section of input weight matrix (bin size 40 neurons) with
preset block patterns (top left), same representation of recurrent weight matrix
without initial structure (top middle). Letters a,b,c mark regions used to compute
average weight (bar plot, bottom left). Spike raster of 2000 network neurons (top
right), in which the colored bars on top indicate the stimulus identity. Activity in
3× 400 neuron block patterns over time (bottom right). (b) Same as (a), but with
consolidation dynamics blocked. Otherwise the network simulation is unchanged.
(c,d) Same as before at later time. After 800 s the recurrent connectivity in both
networks has formed three cell assemblies and the network has developed working
states which correlate with the last stimulus. (e,f) After 20min the stimulation
interval is switched from TOff = 2s → 20s. (e) In the network with consolidation
the input connections remain strong enough to trigger reliable state switching. (f)
As external input weights fade away he network is “stuck” in a single recall state.
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before. In parallel we considered an identical preparation in which the con-
solidation dynamics were blocked. In both cases we prepared the network
in an initial state in which three blocks of 400 neurons each were connected
through strong connections to equally sized blocks of neurons in the net-
work (Fig. 4.6 (a,b)). The recurrent connectivity was initially unstructured.
We then began to externally stimulate the three populations sequentially
with elevated Poisson firing rates (Fig. 4.6 (a,b)). After 10 minutes both
networks had formed cell assemblies and thus copied the input structure
which allowed them to maintain delay activity even in the absence of an
active stimulus (Fig. 4.6 (c,d)). There was no apparent difference in the
dynamics of either network. After 20min of simulated time we increased
the mean inter-stimulation interval (TOff = 2s → 20s) which causes both
networks to spend a large fraction of time in the delay activity state. Af-
ter 30 minutes we could appreciate distinct differences in dynamics of the
two networks. While state switches are evoked reliably through external
stimulus presentation in the control network (Fig. 4.6 (e)), the network in
which consolidation is blocked does not respond to most external stimuli
(Fig. 4.6 (f)) and delay activity is mostly decoupled from external input.

The effect is accompanied with a notable decrease of the input con-
nection weights projecting into the respective assemblies ((Fig. 4.6 (d,f))),
whereas this decrease does not occur in the control network (Fig. 4.6 (c,e)).
Furthermore internal assembly weights in the network without consolidation
are weaker than compared to the network with consolidation. However, this
weakening did not impair the cell assemblies ability to display delay activity
at around 20Hz (Fig. 4.6 (f)).

4.3 Discussion

Our model has multiple components of homosynaptic, heterosynaptic and
transmitter-triggered plasticity as well as consolidation and, where this is
mentioned explicitly, a slow form of homeostatic metaplasticity. Remov-
ing any one of these mechanisms destroyed the proper function as a memory
module. Our results indicate that a variety of plasticity mechanisms encoun-
tered in the brain need to work together to allow proper memory function.

Integral part of our model is heterosynaptic plasticity to complement
triplet STDP. Because heterosynaptic plasticity and triplet STDP act on the
same timescale this can yield multi-stability in firing rates in networks with
embedded cell assemblies, which cannot be achieved through slow homeo-
static mechanisms alone (Zenke et al., 2013). To allow multiple stable solu-
tions to co-exist (cf. Fig. 4.2 (b)) it is crucial that heterosynaptic plasticity
acts as a burst detector. Here we chose the burst detector to appear with a
fourth order postsynaptic dependence (Eq. (4.14)). While this is the lowest
possible power to enable a second stable solution of the weight dynamics in a
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protocols. (a) Relative weight change caused by a standard pairing protocol with
causal (+10ms) and acausal (-10ms) spike timing at different pairing frequencies for
triplet STDP with (red) and without (black) heterosynaptic plasticity. Protocol: 75
simulated pairings at +10ms and -10ms spike-timing. (b) Relative weight change
under a plasticity protocol in which the pre and postsynaptic cell spike randomly
with Poisson statistics with fixed mean firing rates. Classic triplet model (black)
or with heterosynaptic plasticity (red). Error bars indicate the standard deviation
from n = 20 randomly generated 10s Poisson spike trains for pre and postsynaptic
cell.

cell assembly (cf. Fig. 4.2 (b)) we expect higher powers or a sharp threshold
(Chen et al., 2013) to lead to similar behavior. Note that the effect of het-
erosynaptic plasticity is small in classical pairing experiments (Fig. 4.7 (a)),
whereas it manifests itself clearly in experiments with postsynaptic high-
frequency stimulation only (Chen et al., 2013; Chistiakova et al., 2014).
Moreover our model indicates that heterosynaptic plasticity should become
important during paired recordings with random spike-timing (Fig. 4.7 (b)).

In our model, similar to Clopath et al. (2008), the reference weight w̃
follows w on a slower timescale than the induction of plasticity. During
a certain time window (∼20-60min) induced changes can be reversed by
uncorrelated postsynaptic activity. This is in qualitative agreement with
experimental observations on the reversal of LTD and LTP (Zhou et al.,
2003; Zhou and Poo, 2004; Abraham, 2003). During external stimulation
network neurons become first selective to a certain stimulus through plas-
tic changes of the external afferent connections. Consequently recurrent
connections follow and form cell assemblies between neurons with the same
preferred stimulus. Blocking the consolidation dynamics in the model causes
the network to depotentiate the previously potentiated afferent connections
once the network starts to exhibit delay activity (Fig. 4.6). This causes
the assemblies to eventually decouple from external input. Thus, a network
without synaptic consolidation can no longer recall memories from partial
cues. Our findings suggest a potentially important computational role of
consolidation.

We have defined homeostatic processes as mechanisms that act on timescales
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of several minutes or longer to drive a system back into its normal physiolog-
ical state. In our model three processes serve this role. First, transmitter-
triggered plasticity, second, regulation of LTD amplitude, and third in-
hibitory synaptic plasticity. Functionally, transmitter-triggered plasticity
ensures a baseline level of activity for individual cells and it opposes, in a
push-pull fashion, low activity LTD induced through random spike pairings
(Fig. C.6 (a)). Other homeostatic push-pull mechanisms such as synaptic
scaling (Turrigiano et al., 1998) could serve the same function.

In our model inhibitory plasticity regulates the global network activity
and thus constrains the number of active cells per cell assembly (Fig. C.6 (b)).
While it is widely accepted that synaptic inhibition in neural networks con-
trols the overall network activity, it is neither clear how inhibitory connec-
tions are set up nor how the strength of inhibition adapts in the presence of
excitatory plasticity. Here we used a simple inhibitory STDP learning rule,
which is reminiscent of Woodin et al. (2003), as a proxy for what could in fact
be achieved by a range of different learning rules (Vogels et al., 2013). The
global modulation in our model is justified by experiments showing that
inhibitory plasticity is controlled via secreted factors and homeostatically
targets global network activity rather than the activity of single neurons
(Turrigiano, 2012). After stable delay activity is established in our network
model, inhibitory plasticity can be turned off completely without notable
impact on network function (not shown). In that sense inhibitory plasticity
plays its role in establishing a stable working point.

Homeostatic regulation of LTD plays a similar role. When the initial
connectivity is hand-tuned to ensure that a substantial fraction of network
neurons are activated by a stimulus it is not necessary to include it into the
model (cf. Fig. 4.4). However, if network neurons have no initial stimulus
preference they fail to develop selectivity in the absence of some form of
homeostatic regulation (Fig. C.5 (a)).

The emergence of cell assemblies through Hebbian synaptic plasticity has
been studied in the past (Clopath et al., 2010; Amit and Mongillo, 2003a).
Limited success has been made, as how to such assemblies can be learned
and recalled without causing run-away behavior and erase the stored infor-
mation in a setting where plasticity is always active. As an example, to
achieve stable learning of cell assemblies Amit and Mongillo (2003a) had to
manually adjust the strength of the external input to the stimulated cells to
compensate for growing recurrent connections. In our model this problem
does not arise for multiple reasons. First, input connections are plastic and
can automatically adjust to compensate for increasing recurrent drive. Sec-
ond, the combination of triplet STDP with heterosynaptic plasticity as it
is presented here cannot lead to run-away dynamics as long as the number
of active cells per assembly is limited by global inhibition. Third, to ensure
that global inhibition and other parameters lie in the right parameter range,
plasticity is complemented with a small number of homeostatic mechanisms
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acting on longer timescales that drive the network to a physiologically de-
sired operational regime.

4.4 Methods

To study the formation and recall of cell assemblies we simulated spiking
neural network models with random sparse connectivity and multiple dif-
ferent forms of synaptic plasticity. The networks we studied consisted of
5120 integrate-and-fire neurons (4096 excitatory and 1024 inhibitory). In
the following we describe the different elements of the model. For clarity we
only quote the most relevant parameters in the text. A complete list of all
parameter values is supplied in the Supplementary material (Section C.2).

4.4.1 Neuron model

Throughout our study we use leaky integrate-and-fire neurons with spike
frequency adaptation (SFA) which receive conductance based synaptic in-
put. The temporal evolution of the membrane voltage Ui of neuron i is
described by

τmdUi
dt

= (U rest − Ui)

+gexc
i (t)(U exc − Ui)

+ginh
i (t)(U inh − Ui) (4.2)

where the inhibitory input ginh
i is defined as the dimensionless quantity

ginh
i (t) = ggaba

i (t) + ga
i (t) (4.3)

which is the sum of inhibitory synaptic input ggaba
i (t) and a contribution

from spike triggered adaptation ga
i (t). Both quantities evolve according to

their own dynamics

dggaba
i

dt
= −

ggaba
i

τgaba
+
∑
j∈inh

wijSj(t) (4.4)

dga
i

dt
= −g

a
i

τa
+ ∆aSi(t) (4.5)

and their states jump at the arrival of presynaptic spikes from upstream
inhibitory neurons Sj(t) =

∑
k δ(t − tkj ) or the occurrence of postsynaptic

action potentials Si(t).
Where this is mentioned explicitly we add a second adaptation conduc-

tance to ginh
i which is described by the same temporal evolution as shown

in Eq. (4.5) but using different values for ∆gadapt and τadapt. The resulting
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long lasting adaptation effect allows us to mimic cellular behavior recently
characterized by Pozzorini et al. (2013).

Depolarizing current in Eq. (4.2) results from excitatory synaptic input

gexc
i (t) = αgampa

i (t) + (1− α)gnmda
i (t) (4.6)

with a fast AMPA-like component gampa
i (t) and a slowly rising and decaying

NMDA-like component gnmda
i (t). Their temporal evolution is described by

the following set of equations

dgampa
i

dt
= −

gampa
i

τampa
+
∑
j∈exc

wij uj(t)xj(t)Sj(t) (4.7)

τnmdadg
nmda
i

dt
= −gnmda

i + gampa
i (4.8)

where the quantities uj(t) and xj(t) appearing with the synaptic weight wij
are describe the evolution of short term plasticity (Section 4.4.2.1).

An action potential is triggered when the membrane voltage of neuron i
rises above the threshold value ϑi. Following a spike the voltage Ui is reset to
U rest
i . At the same time the threshold ϑi is transiently increased ϑi → ϑspike

to implement an absolute and relative refractory period. In the absence of
spikes the dynamic threshold ϑi relaxes quickly to its resting state ϑrest as
described by

τ thrdϑi
dt

= ϑrest − ϑi (4.9)

4.4.2 Synaptic plasticity

Our model combines different forms of plasticity. Excitatory synapses ex-
hibit short term plasticity (STP), spike-timing-dependent plasticity (STDP)
and heterosynaptic plasticity. Inhibitory to excitatory synapses are plastic
and obey a STDP rule which is globally modulated by a secreted factor.

4.4.2.1 Short term plasticity

All excitatory connections in our model exhibit short term plasticity (STP)
as described previously (Markram et al., 1998; Mongillo et al., 2008). The
temporal evolution of the STP state variables ui(t) and xi(t) is described by

d

dt
xj(t) =

1− xj(t)
τd

− uj(t)xj(t)Sj(t) (4.10)

d

dt
uj(t) =

U − uj(t)
τf

+ U (1− uj(t)) Sj(t) (4.11)

with a fixed parameter set for all synapses (τd = 200 ms,τf = 600 ms and
U = 0.2) which leads to a saturating output non-linearity.
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4.4.2.2 Plasticity of excitatory synapses

Plastic excitatory connections are subject to three different mechanisms
of long term plasticity: Triplet STDP (Pfister and Gerstner, 2006) as well
as transmitter-triggered (Kempter et al., 2001) and heterosynaptic plastic-
ity (Chistiakova et al., 2014). All three forms of plasticity effect the synaptic
weights wij directly as follows

d

dt
wij(t) = Az+

j (t) zslow
i (t− ε)Si(t) (4.12)

−Bi(t) z−i (t)Sj(t) (4.13)

−β (wij − w̃ij(t)) (z-
i(t− ε))

3 Si(t) (4.14)

+δ Sj(t) . (4.15)

The first two expressions (Exp. (4.12) and (4.13)) model the Triplet
STDP part. Expression (4.14) represents heterosynaptic plasticity in which
the high power of the postsynaptic firing rate acts as a burst detector. The
ε offset in the time argument ensures that the current action potential is
not counted in the trace. Finally Expression (4.15) represents the term re-
sponsible for transmitter-triggered plasticity. All occurrences of the state
variable zj/i(t) denote synaptic traces which can occur as pre or postsynap-
tic quantities. Each of them evolves independently according to the following
differential equation

dzxi
dt

= −z
x

τx
+ Si(t) (4.16)

with individual time constants τx. The parameters A, β and δ are fixed.
Moreover Bi(t) = A (unless mentioned otherwise; see Section (4.4.2.4) for
details) and the reference weight w̃ij(t) evolves according to its own consol-
idation dynamics.

4.4.2.3 Consolidation dynamics

Similar to existing work w̃ follows the negative gradient of a double well
potential (Clopath et al., 2008; Lisman, 1985; Gerstner and Kistler, 2002b)
and is biased by the difference between current weight wij and the reference
weight w̃ij described by the following expression

τ cons d

dt
w̃ij(t) = wij(t)− w̃ij(t)

−P w̃ij(t)
(
wp

2
− w̃ij(t)

)
(wp − w̃ij(t)) (4.17)

in which the parameter P controls the strength of the potential, wp defines
the upper stable fixed point for the unbiased case (i.e. wij(t) = w̃ij(t); in
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this case the lower stable fixed point is at w̃ij(t) = 0). And finally τ cons =
20 min characterizes the rate of convergence towards the stable equilibrium
solutions.

4.4.2.4 Homeostatic regulation of LTD

In most simulations we keep the rate of LTD Bi(t) fixed (Bi(t) = A) and
choose initial synaptic strength such that a subset of neurons respond with
rates above the LTP threshold to external stimulation. Here we implicitly
assume that the network has been prepared in this state by a homeostatic
mechanism which acts on a much longer timescale than it is captured in
our simulations. To test this hypothesis we ran a subset of simulations in
which Bi(t) was explicitly time dependent (Fig. C.3 and C.4; Bienenstock
et al. (1982); Pfister and Gerstner (2006)). Where mentioned explicitly in
the text we set

Bi(t) =

{
ACi(t) for Ci(t) ≤ 1

A otherwise
(4.18)

d

dt
Ci(t) = −Ci(t)

τhom
+
(
zht
i (t)

)2
(4.19)

with τhom = 20min, in which the dynamics of the synaptic trace zht
i (t) are

given as before by Eq. (4.16) with τht = 100 ms.

4.4.2.5 STDP model of inhibitory synapses

In our model inhibitory-to-excitatory synapses obey a simple STDP learning
rule whose intensity and sign are controlled globally through a secreted factor
(Turrigiano, 2012).

The STDP rule (cf. Fig. 4.4) is given by

d

dt
wij(t) = η G(t) ((zi(t) + 1)Sj(t) + zj(t)Si(t)) (4.20)

where η are constants, the zxj/i denote pre/postsynaptic traces (cf. Eq. (4.16)),

Sj/i(t) are the pre/postsynaptic spike trains, and G(t) represents the global
secreted factor which we model as G(t) = H(t) − γ where H(t) is the low
pass filtered version of all spikes in the excitatory population given by

d

dt
H(t) = −H(t)

τH
+
∑
i∈exc

Si(t) (4.21)

with characteristic time constant τH = 10s. We interpret G(t) as a chemical
signal which neurons secret when they are active and which diffuses in the
intracellular space where it can be sensed by other neurons or synapses as
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a measure of the global network activity. When this activity drops below
its target value γ, G(t) is smaller than zero and the STDP learning rule
(Eq. (4.20)) becomes reminiscent of Woodin et al. (2003). By modulating
inhibitory STDP this way the learning rule becomes bidirectional and serves
as a controller for the overall network activity.

4.4.3 Simulations including plasticity

4.4.3.1 Simulation of postsynaptic tetanization protocols

To mimic the plasticity protocol described in Chen et al. (2013) (Fig 4.2 (a))
we connected a single postsynaptic neuron with 1000 presynaptic connec-
tions with our plasticity rule. We used random initial values for the synaptic
weights wij and their reference values w̃ij which were drawn independently
from a normal distribution with mean 0.3 and variance 0.09. To ensure pos-
itive values after the assignment, all weight values were then truncated at
zero.

We simulated the ongoing measurement of the EPSP size from two dif-
ferent pathways via designated synapses (Figs. 4.2 (a) i and ii) which were
stimulated at alternating intervals with two spikes (50ms time difference)
every 7.5s. This stimulation was maintained during the entire protocol ex-
cept during tetanization (10min < t < 13min) were the postsynaptic cell
was forced to spike through simulated current injection (3 trains with one
minute offset consisting of 10 burst at 1Hz with 5 spikes at 100Hz each;
compare Chen et al. (2013)).

4.4.3.2 Stimulation paradigm

For simulations requiring external stimulation we used the following paradigm.
In the absence of a stimulus all input neurons were firing with Poisson statis-
tics at a fixed rate of 10Hz. A designated set of stimuli was fixed at the
beginning of the simulation as a graded (Fig. 4.2) or a binary activation
pattern of input neurons (e.g. Fig. 4.4). During stimulation input cells
which were active in a given pattern fired with a by s = γ35Hz increased
rate (unless mentioned otherwise), in which γ was one for binary patterns
or from the interval [0,1] for graded activity patterns.

Stimulus order was chosen randomly with inter-stimulus-intervals and
stimulus durations drawn from Exponential distributions with respective
mean values TOff and TOn. All simulations were allowed for an initial burn-
in period of at least 50s during which no stimulation was triggered.

4.4.3.3 Details of feed-forward network simulations

To characterize the effect of our excitatory plasticity rule on a single post-
synaptic neuron we simulated two simple feed-forward networks without
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inhibition (Fig. 4.2 (c-e) and Fig. C.1). In particular we simulated a single
postsynaptic neuron which received plastic excitatory input from two pop-
ulations of Poisson neurons. The neurons in one population fired at 10Hz
and the initial weight w0 took different values in the interval [0.2,0.35] as
stated in Figure 4.2 (c-e). Neurons in the second Poisson population fired
at 1Hz and the initial weight was initialized at a value of 0.1.

In Figure 4.2 (g) we used a similar setup with 1000 presynaptic Poisson
inputs (initial weight w0 = 0.05) all firing at a constant background rate of
10Hz. The stimulus set consisted of ten Gaussian profiles in the presynaptic
index with fixed standard deviation σ = 50. Stimulation onset was at t =
100s mean stimulation interval TOn = 20s (TOff = 100ms).

4.4.3.4 Balanced network model

In all network simulations we used a balanced network model consisting
of 4096 (64× 64) excitatory and 1024 inhibitory integrate and fire neurons.
The connectivity within the network between all neurons was random sparse
with an overall connection probability of 10%. Neurons in the excitatory
population received additional input from an external population of equal
size which provided noisy background input. These input connections were
either pre-structured so that cells from within a circular area (radius R = 8)
in the 64 × 64 input space projected to individual network neurons (cf.
Fig. C.3). In particular the center of the circle was chosen randomly within
the input space for each postsynaptic neuron. Where mentioned explicitly
input connections initialized with random sparse connectivity with 5% con-
nection probability. All excitatory afferent connections relayed stimuli from
the external Poisson input population to the network (see Section 4.4.3.1).

In simulations involving plasticity all afferent connections to excitatory
cells in the network were plastic (cf. Section 4.4.2 and Fig. 4.4 (a)). Moreover
plasticity was always active, also during periods when the network was cued
with partial stimuli (cf. Fig. 4.5).

4.4.3.5 Simulation details

All simulation code was written in C++ and based on our in-house network
simulation framework Auryn. Neuronal state variables were updated using
the forward Euler method with 0.1ms temporal resolution. The only ex-
ception from that was the slow evolution of the reference weights w̃ij which
were updated with a time step of 1.2s for efficiency reasons.

4.4.4 Determining readout populations

To determine which cells respond to a given stimulus we compute the total
spike count per neuron per stimulus during all stimulus-on periods in the
time interval 3000s < t < 3500s. We then compute the population average
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per stimulus and count neurons as active for a given stimulus if their average
spike response is larger than the mean. We also computed the population
firing rate of the corresponding sub-population (activity) with a temporal
resolution of 100ms. These data are either plotted directly along with spike
raster plots or used to compute peristimulus time histograms.

4.4.5 Analysis of learning rule

If the pre and postsynaptic spike trains are Poisson triplet STDP can be
interpreted as a rate model (Pfister and Gerstner, 2006). The derivation
for the present plasticity rule proceeds mostly along the same lines. Only
the heterosynaptic term needs a somewhat special treatment to take into
account the higher order correlations that arise.

We start from the formulation of the full plasticity rule

d

dt
wij(t) = Az+

j (t) zslow
i (t− ε)Si(t) (4.22)

−Bi(t) z−i (t)Sj(t) (4.23)

−β (wij − w̃ij(t)) zhet
i (t− ε)3Si(t) (4.24)

+δ Sj(t) . (4.25)

Since consolidation dynamics are slower than the weight dynamics in w
we now assume fixed Bi(t) = B, w̃ij = const. Taking the expectation value
on both sides yields

〈
d

dt
wij(t)

〉
= Aτ+τ slowxy2 −Bτ−xy − β (wij − w̃ij)

〈
zhet
i (t)3

〉
y + δx

where we replaced all presynaptic traces by their mean firing rates x (and
postsynaptic traces by y respectively). This leaves us with the third order
moment

〈
zhet
i (t)3

〉
of the burst detector which for a Poisson spike train can

be computed conveniently by taking the Laplace transform of the stationary
distribution of z when interpreting it as a random variable (see Section C.3
for details).

This allows us to arrive at

〈
d

dt
wij(t)

〉
= Aτ+τ slowxy2 −Bτ−xy + δx

−β (wij − w̃ij)
(yτ

6

(
2 + 9yτ + 6y2τ2

))
y . (4.26)

For given pre and postsynaptic firing rates this equation has a single
stable fixed point wFP

ij at
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wFP
ij = w̃ij +

Aτ+τ slowxy2 −Bτ−xy + δx

β
(

1
6yτ (2 + 9yτ + 6y2τ2)

)
y

(4.27)

We now consider connections inside a cell assembly (x = y) and the
afferent connections into the assembly (x� y). From Eq. (4.27) we see that
both weights are finite and the individual fixed points are well separated
for the two connection types (Fig. 4.8). In particular connections between
neurons with high activity potentiate to a fixed level at which they slowly
saturate even if rates increase further.

We can appreciate the multiple stationary solutions of the learning rule
by looking at the fixed points of Eq. (4.26) as a function of ξ ≡ β (w − w̃)
(Fig. 4.9), which illustrates that for sensible choices of the parameter β
weight dynamics can always be made bistable.

So far we have assumed that spiking is Poisson. However, particularly
at elevated firing rates the effects of refractory period and adaptation are
non-negligible any more and spiking becomes generally less irregular. The
nontrivial analytical treatment of this issue will remain open at this point.
Nevertheless Jensen’s inequality always guarantees that the burst detector
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obeys the lower bound 〈
zhet
i (t)3

〉
≥
〈
zhet
i (t)

〉3
(4.28)

at which the stable fixed point moves to lower activities (Fig. 4.9). The true
fixed points are likely to lie in between this lower bound and the Poisson
approximation, given that the neuron does not burst. Bursts in the output
activity lead to an increase of the relative strength of heterosynaptic plas-
ticity beyond the Poisson approximation and can thus cause the upper fixed
point to disappear.
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Inter-process communication, not plas-
ticity, limits the speed-up in simu-
lations of spiking neural networks

Authors: Friedemann Zenke and Wulfram Gerstner

At the time of writing this thesis, a version of this chapter was
in revision for Frontiers in Neuroinformatics. The entire chapter
represents the original work of Friedemann Zenke. In particular
he is responsible for all main aspects. Wulfram Gerstner sug-
gested minor modifications during the manuscript preparation.

Abstract

To understand how the central nervous system performs computations using
recurrent neuronal circuitry, simulations have become an indispensable tool
for theoretical neuroscience. To study neuronal circuits and their ability to
self-organize, increasing attention has been directed towards synaptic plas-
ticity. In particular spike-timing-dependent plasticity (STDP) creates spe-
cific demands for simulations of spiking neural networks. On the one hand
a high temporal resolution is required to capture the millisecond timescale
of typical STDP windows. On the other hand network simulations have to
evolve over minutes, hours or even days, to capture the timescale of long-
term plasticity. We have addressed this demand and created the highly
specialized simulation environment “Auryn” for the simulation of synaptic
plasticity in medium-size recurrent network models. Here we compare the
performance of our code to other simulators like Brian, NEST and Neuron.
We find that Auryn is faster than Brian and Neuron while performance is
similar to NEST. In parallel simulations NEST and Auryn exhibit compara-
ble scaling behavior. In particular the speed-up saturates for a low numbers
of active cores. This saturation is then analyzed using a minimal run time
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model, which shows that latencies in the inter-process communication con-
stitute the bottleneck. Finally we show that current models of STDP do
not impose an additional constraint on the scaling behavior for medium size
networks. Our results show that real-time simulation of plastic networks
is possible. However, the speed-up margin of parallel code is limited due
to inter-process communications. This suggests that researchers addressing
problems of plasticity in recurrent neural networks should take care in the
selection of their simulation hardware.

5.1 Introduction

Neurons communicate with each other by short electrical pulses, called ac-
tion potentials or spikes, that can be considered as unitary events. In sim-
ple neuron models of integrate-and-fire type, such events are generated by
a threshold crossing process. The dynamics of a single neuron, which forms
one unit of a large brain network, are therefore relatively simple.

Nevertheless, the simulation of activity in large neural networks, which
has been receiving increasing interest over the past years (Markram, 2006;
Ananthanarayanan et al., 2009; Lang et al., 2011; Koch and Reid, 2012; Wal-
drop, 2012; Kandel et al., 2013), poses multiple computational challenges.
First, brain networks consist of billions of neurons (Kandel et al., 2000).
Even if each neuron is described as a relatively simple dynamic processing
unit (e.g., an adaptive integrate-and-fire neuron with two or three update
equations per neuron (Izhikevich, 2003; Brette and Gerstner, 2009; Gerstner
et al., 2014)), the sheer number of units suggests that real-time simulation
of these equations will be hard to achieve on a single core. Therefore paral-
lelization of computation is desirable. Second, each unit sends and receives
signals from thousands of others (Kandel et al., 2000; DeFelipe and Fariñas,
1992), such that connectivity between units is relatively high compared to
classical models in the physical sciences where interactions are mainly be-
tween nearest neighbors in physical space (Anderson, 1995). Therefore, the
communication overhead in a parallel implementation could potentially be
high. Third, the synaptic contact points between two connected units are
not fixed but may change (Bliss and Lømo, 1973; Markram et al., 1997; Bi
and Poo, 1998; Zhang et al., 1998; Bi and Poo, 2001; Markram et al., 2012).
Therefore connections cannot be described with fixed parameters, but need
further dynamic variables. Moreover, the evolution of these synaptic vari-
ables depends on activity of both the sending and the receiving neuron so
that their treatment requires additional care and readily available paral-
lelization approaches cannot be used. The changes in the dynamic values
associated with the synaptic contact points are referred to as synaptic plas-
ticity.

The question therefore arises whether the scaling of parallel implementa-
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tions of simulated neural networks is dominated mainly by the inter-process
communication or by the dynamics of the connections. This question can-
not be answered in a straightforward manner, because it depends on mul-
tiple factors. First, the communication between neurons only takes place
at the moment when a spike happens, leading to event-based updating
schemes (Morrison et al., 2007, 2008). Therefore the number of events per
unit of time plays a role for the communication overload. Second, changes
of synaptic parameters, while induced by spike events, are relatively small
so that they evolve on a slower time scale. Roughly speaking, a biologi-
cal neuron sends out spikes that last each about one millisecond. The rate
at which these spike events are generated is a few per second. The slow-
est dynamics are that of synaptic plasticity which typically needs several
spike events to induce a measurable change. Moreover, once changes are
induced they often persist for many hours. In the field of neuroscience, the
behavioral phenomenon of learning and memory formation is thought to
be intimately linked to the biological rules of synaptic plasticity (Bliss and
Lømo, 1973; Markram et al., 1997; Bi and Poo, 1998; Zhang et al., 1998; Bi
and Poo, 2001; Markram et al., 2012). To check in experiments whether a
stable memory has been formed it is not uncommon to follow a biological
substrate for 24 hours or more. If we want to simulate learning and memory
formation, the simulator has therefore to cover time scales from milliseconds
to days.

While simulation packages for networks with fixed connectivity are read-
ily available (Gewaltig and Diesmann, 2007; Eliasmith et al., 2012; Hoang
et al., 2013), simulations of plastic brain circuits have received much less
attention (Gewaltig and Diesmann, 2007; Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009). For example, the NEST simulation en-
vironment has been in the released initially for fixed network connections
and models of synaptic plasticity have been added later on (Gewaltig and
Diesmann, 2007; Morrison et al., 2007).

Here we focus on networks of several tens of thousands of neurons. These
medium-sized networks are of particular practical importance because they
are used in many theory and modeling labs world wide. To achieve high
simulation speeds in medium size recurrent networks we have developed
the lightweight parallel simulation environment Auryn. Simulations based
on this framework were successfully used in a range of studies that either
involve plasticity (Vogels et al., 2011; Zenke et al., 2013) or in which long
recordings of simulated network data were a requirement (Lütcke et al.,
2013). Auryn is written from scratch in C++ and adopts powerful concepts
from existing open source simulators such as Brian (Goodman and Brette,
2008) or NEST (Gewaltig and Diesmann, 2007). Its source has recently
been released under the general public license (GPL). Here we describe the
key features of our simulation environment and compare its performance to
three popular simulators in the field (namely Neuron, Brian and NEST).
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We show that medium size networks of point neurons with plastic syn-
apses can be simulated in real-time or faster. In our tests on a single com-
puter or a small cluster, simulations using Auryn generally ran faster than
this was the case for other simulators in their standard configuration. We
achieved comparable results with NEST when running it with the same for-
ward Euler solver that was used in Auryn. Under these conditions both
simulators showed not only comparable run times, but also similar scaling
behavior when run in parallel on a cluster. In particular we show that small
to medium size networks (up to 25,000 IF fire neurons with plasticity) can
be run in real-time or faster. However, we observed for both simulators that
run times saturate already at a relatively low number of parallel processes.
This makes it difficult to speed up the simulation beyond about one tenth of
real-time. We show that this saturation is due to communication latencies
in the inter-process communications. In a last step we illustrate that the
implementation details of spike based plasticity rules, such as STDP, do not
have a large impact on run times. Latencies in the inter-process commu-
nication still constitute the main bottleneck. Consequently it is likely that
the speed – instead of size – requirement can be fulfilled by single powerful
compute nodes or super-computers with extremely low latencies rather than
large clusters.

5.2 Materials and Methods

In this manuscript we compare results from a range of different neuron,
network and plasticity models. However, there are some underlying simi-
larities. All networks are built from integrate-and-fire neurons with either
current based or conductance based synaptic input. We have summarized
the detailed model description for the neuron models, plasticity rules and
network models in tabular form according to (Nordlie et al., 2009) (Supple-
mentary Material). In the following we only give a short overview of the
simulation code, hardware and network models we used. In Section 5.2.3 we
comment on general implementation details of STDP in simulations.

5.2.1 Simulation code and hardware

For all simulations using Auryn (version 0.3) which is publicly available on
the Internet1 we used forward Euler integration with a 0.1ms integration
time step and a 0.8ms synaptic delay. Simulations are compiled against
Boost (version 1.41.0), GSL (version 1.13) and MPICH2 (version 1.2.1) using
the GNU C++ compiler (version 4.4.7). The code was executed on either
a single node or a cluster consisting of 4 nodes. The individual nodes were
technically identical and running Red Hat Enterprise Linux (version 6) on

1http://www.fzenke.net/auryn
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a dual CPU (Intel Xeon CPU E5-2670 0 @ 2.60GHz) board with 64GB
of RAM. Nodes communicated using Ethernet link aggregation over four
1Gb connections each via a switch comprised of two Cisco Nexus Fabric
Extenders (N2K-C2248TP) and two Cisco Nexus (N5K-C5548-UP).

5.2.2 Network models

5.2.2.1 Vogels-Abbott benchmark

For comparison against other simulators we adapted the VAbenchmark2.py

benchmark code from the PyNN (Davison et al., 2009) package to run the
same simulation in Brian, NEST and Neuron. To compare simulation times
alone we modified the benchmark code such that it did not record any spikes
or membrane potentials. Furthermore we introduced a 0.8ms synaptic delay
between all synapses to reduce inter-process communication for the cases
where parallel execution was possible. For Figure 5.2 we used a simulation
time of 20s. For all benchmarks only the run time of the actual simulation
was measured. The time to set up the weight matrices or to write data to
disk was ignored.

We implemented the same benchmark network in Auryn. It is comprised
as an example in the current release of the code (sim coba benchmark.cpp).
The only difference between the two implementations was that Auryn ini-
tially loads the network state from a file. Hence no priming with 50ms of
external Poisson input was needed.

Unless mentioned otherwise we used Neuron (version 7.3), NEST (ver-
sion 2.2.2) and Brian (Goodman and Brette, 2008) (version 1.2.1) in their
respective default configurations and compiled against MPI libraries where
possible. Unless mentioned otherwise we used MPICH2 (version 1.2.1).
However we did not encounter a notable difference in performance with
OpenMPI (version 1.4.3).

5.2.2.2 Other network models

Apart from the Vogels-Abbott benchmark described in the last section (Fig-
ure 5.2 and Figure 5.3 A) we used two distinct network models that are
adapted from published work. The detailed model description is available
in tabular form (Nordlie et al., 2009) in the Supplementary Material. The
code to all simulations used in this paper is freely available with the Auryn
simulator package.

1. The 25,000 cell network used in Figure 5.3 B-D is described in Lütcke
et al. (2013) to mimic a cortical circuit at low firing rates receiving tem-
porally varying external input. The code is available as sim dense.cpp

with the Auryn simulator.
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2. The 25,000 cell network used for Figures 5.3 C-D and Figure 5.4 B-D
is described in Zenke et al. (2013). Its example code is available as
sim background.cpp with the Auryn simulator.

5.2.2.3 Brunel network

This is a 10,000 cell balanced network model based on Brunel (2000). We
adapted the simulation included in the pyNEST examples in the current
NEST (Gewaltig and Diesmann, 2007) release (version 2.2.2) under the
LeNovere 2012 directory (Gewaltig et al., 2012), which comes as a non-
plastic network and the same network with weight dependent STDP (Sup-
plementary Material). To make the networks comparable with the other
simulations synaptic delays were set to 0.8ms and fixed random connectiv-
ity was used.

5.2.3 Implementation of spike-timing-dependent plasticity

A broad family of spike-timing-dependent plasticity (STDP) models can be
written in the following form Gerstner and Kistler (2002b)

dwij
dt

= apre
1 Sj(t) + apost

1 Si(t)

+Sj(t)

ˆ ∞
0

W (s)Si(t− s)ds

+Si(t)

ˆ ∞
0

W (−s)Sj(t− s)ds (5.1)

where apre
1 and apost

1 are constants, W (t) is a real valued function with fi-
nite support and Sj(t) is the presynaptic (Si(t) the postsynaptic) spike train
given as a sum of delta functions Sx(t) =

∑
k δ(t−txk) where txk runs over all

spike times k of neuron x. The parameters apre
1 , apost

1 as well as the window
W (s) may depend on the momentary value wij of the synaptic weights (van
Rossum and Turrigiano, 2001; Gütig et al., 2003). Expression (5.1) de-
scribes a piecewise constant function of time with jumps whenever pre- or
postsynaptic spikes occur. Note that STDP can also contain higher order
terms (Pfister and Gerstner, 2006) which does not influence the key points
of our argument. In many situations the window function W (t) can be well
approximated by one or multiple exponential functions. As an example

W (t) =

A
+ exp

(
− t
τA

)
t > 0

B− exp
(

+ t
τB

)
t ≤ 0

where A, B, τA and τB are constants, yields a plausible STDP curve (Song
et al., 2000; Gerstner and Kistler, 2002a; Zhang et al., 1998). Whenever the
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window function can be broken down to exponential shapes, this allows for
an efficient online implementation by using synaptic traces (Gerstner and
Kistler, 2002b; Morrison et al., 2008). A synaptic trace zi(t) is a low pass
filtered version of the spike train Si(t) of neuron i. It is described by the
linear differential equation

dzxi
dt

= −z
x
i

τx
+ Si(t) (5.2)

with associated respective timescale τx. In the absence of spikes the so-
lution is a simple exponential decay. Eq. (5.2) can either be integrated
time-continuously by multiplication with the constant exp(−∆t

τx
) in every

simulation time step ∆t or by using the fact that the analytical solution is
known for arbitrary time intervals (event-based update).

By combining Eq. (5.1) and (5.2) synaptic weight updates can be written
as follows

dwij
dt
∝ A+z+

j (t)Si(t)−A−z−i (t)Sj(t) + apre
1 Sj(t) + apost

1 Si(t) (5.3)

which is ideally suited for event-based integration because weight changes
only occur at pre- or postsynaptic spike times. To add plasticity to a net-
work simulation one therefore simply adds the required number of traces
(cf. Eq. (5.2)) and the event-based weight update. The simplest implemen-
tation of STDP now proceeds as follows: at time tj of a presynaptic spike
of neuron j the trace z−i (t) is read out and the necessary weight update is
applied to the weight wij . Since the postsynaptic trace of neuron i can be
integrated alongside with the neuronal state no particular care has to be
taken for parallel processing.

This changes in two ways in the case of a postsynaptic spike. First, in
case of parallel processing the neuron from which the spike originated might
not be integrated on the same physical computer. Hence there is no simple
way of providing the value of its synaptic trace. Second, the simulator might
not offer efficient means of finding all presynaptic partners of a postsynaptic
neuron. Doing this efficiently generally costs memory, because each neuron
needs to keep a list of all its presynaptic partners. This approach is therefore
prohibitive for simulators like NEST which are aiming at very large scale
simulations, where memory usage is a limiting factor (Helias et al., 2012).

Per default Auryn takes the simplest and most memory greedy approach
where at each postsynaptic firing time all associated weight updates are
carried out immediately. To be able to provide the value of the trace of any
presynaptic neuron at the time of the update Auryn computes presynaptic
traces on all nodes in a time continuous way. That means that presynaptic
traces are evolved in every time step irrespectively if the value is needed or
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not. Since every process needs to keep track of all presynaptic traces, it also
means that some redundant work is being done.

Auryn alternatively supports an event-based approach. This approach
exploits the fact that in the absence of spikes, the solution to Eq. (5.2) is an
exponential decay. Since the event-based trace update cannot be vectorized
efficiently this only provides an advantage at low firing rates. However,
the increased overhead due to the use of the exponential function generally
seems to outweigh the advantages of this approach, which is why Auryn
chooses by default time-continuous updates of presynaptic traces.

NEST uses an event-based approach which is more elaborate. Synaptic
weight updates are only carried out at the times of presynaptic spikes (Mor-
rison et al., 2007). To do this, each neuron stores its past firing history in
a small buffer. Whenever a presynaptic spike occurs, all post-pre updates
are applied retrospectively in a batch. Since for each update all quantities
appearing in Eq. (5.3) have to be known, the retrospective update requires
to keep track of these values or to compute them when needed.

5.3 Results

Auryn was written with the UNIX philosophy in mind: Do one thing and do
it well (Raymond, 2003). To run simulations fast Auryn simulates networks
of spiking neurons and writes relevant output to human readable text files.
It does not perform any analysis and the output files have to be processed
and analyzed independently. At the heart Auryn is a collection of C++
classes that are combined into a compiled program to form the simulation.
This allows the compiler to optimize each simulation code specifically for
the hardware it runs on.

Like other simulators Auryn takes a hybrid approach between event-
based and continuous integration (Morrison et al., 2005). Neuron models in
Auryn are integrated continuously, while weight updates for many standard
synaptic plasticity rules are implemented in an efficient event-based way.

Quantities that require time continuous integration are typically neu-
ronal state variables describing synaptic conductance and membrane volt-
age. In many neuronal networks large sets of identical or similar neurons
need to be integrated. The required computation can be vectorized effi-
ciently. The advantages of vectorization are the reduction of function calls,
the efficient use of multi-layer cache architectures deployed in modern CPUs,
and giving the compiler the opportunity to use hardware for single instruc-
tion multiple data (SIMD) such as SSE or AVX. Vectorization is therefore
widely used in existing simulators such as NEST and Brian (Brette and
Goodman, 2011) as well as in our code.

The logical extension to vectorization is parallelization. To run paral-
lel code Auryn uses the message passing interface (MPI) as a general and
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versatile back-end to allow parallel simulations on a single machine with
multiple cores or distributed over multiple physical machines in a cluster.
Auryn currently does no support multithreading, a design decision which
was mainly rooted in trying to keep things as simple as possible.

To place Auryn amongst existing software we performed a series of tests
and compared its performance to existing simulators such as NEST, Brian
and Neuron. We first describe the simple matter of efficiently generating
Poisson spike trains and then show run time results from simulating several
different balanced networks with or without plasticity. We use these net-
works to systematically study the scaling behavior of our code when run in
parallel and discuss the emerging saturation properties with the help of a
simple run time model. Finally we discuss the cost of plasticity in network
simulations.

5.3.1 Poisson spike trains

Spike trains from Poisson neurons are widely used to provide noisy back-
ground input to networks of spiking neurons to achieve some baseline ac-
tivity. In NEST such input is implemented as the combination of a Poisson
generator with so called parrot neurons. The Brian simulator has its own
dedicated object for the purpose, a PoissonGroup. Since we often use Pois-
son input in our simulations, Auryn comes with an optimized algorithm for
the particular scenario where a single pool of N Poisson neurons fires with
identical firing rates.

To efficiently generate Poisson spike trains from such a configuration we
consider a grid spanned by N rows corresponding to the Poisson neurons
and discrete-time with bins of size ∆t on the x-axis (Figure 5.1 A). To create
Poisson spikes we could now fill each row of the grid with spikes by drawing
exponentially distributed inter-spike-intervals. This can be done on-line,
but requires a certain degree of book-keeping because the algorithm has to
remember the N last spike times of all Poisson units. It is more efficient
to fill each column at the very time step when the spikes are needed. This
can be done efficiently since the distribution of inter-spike-intervals (ISIs) is
the same in x and y-direction. Therefore all spikes can be generated online
when they are needed during the simulation (Figure 5.1 A). When a jump
leads beyond N it is simply continued in the next time-step. This way every
random number yields a spike.

To test the performance we wrote equivalent simulation code in Brian,
NEST (by using pyNEST) and Auryn which simply implements 1000 Poisson
neurons firing at 5Hz firing rate. The run times for simulating 100s spike
trains are shown in Figure 5.1 B. This illustrates that in this particular
scenario the Auryn approach is faster than the other two examples. This
allows Auryn to generate Poisson spike trains at a minimal overhead, which
is important when aiming at network simulations in, or faster than, real-
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Figure 5.1 – Efficient generation of Poisson spike trains from a population
of input units. (A) Illustration of the algorithm. One typical ISI interval for single
Poisson neuron (blue). Typical example of a random stride of magnitude x (red
arrow) or a stride x′ that would lead beyond N and is consequently continued in
the next time step (gray). (B) Run times of different simulators to generate 100s
long spike trains from 1000 Poisson neurons spiking at 5Hz. (C) Spike raster from
simulated Poisson spike trains from A. (D) From the same simulation: Distribution
of firing rates (left) with the theoretical expectation from the Poisson distribution
(solid line). Right: Distribution of coefficient of variation of the ISI (CV ISI). The
mean values of the distributions are indicated by arrow heads.

time. The same algorithm is also used to efficiently set up random sparse
connectivity matrices in our code.

5.3.2 Vogels-Abbott network benchmark

We study recurrent networks of leaky-integrate-and-fire neurons. To achieve
low run times Auryn integrates the neuronal state variables (e.g. the mem-
brane potential) using the forward Euler method. More sophisticated inte-
gration algorithms or neuron models can be readily implemented. Similar
to NEST, neuron models in Auryn are included as independent C++ files,
which can be extended or modified. To further improve performance in Au-
ryn, most variables involved in the numerical integration of the neuronal
state variables use single precisions floating point values. This generally al-
lows to perform twice as many floating point operations when using SIMD
as with double precision, thus yielding a theoretical speed-up by a factor of
two. At the same time, the choice of single precision resolution doubles the
number of variables that fit into a cache block compared to double precision
and for this reason reduces costly cache misses.

To test the performance of our code and compare it with other simula-
tors we used a down-scaled version of the conductance-based Vogels-Abbott
model (Vogels and Abbott, 2005), a balanced network model which has been
used as a benchmark in the past (Brette et al., 2007). The source for this
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Figure 5.2 – Vogels-Abbott benchmark. (A) Spike raster of the excitatory
cells in the network as simulated with Auryn. (B) Distribution of the firing rates
(left) and the the coefficient of variation (right). Solid color bars are the results from
Auryn. The black lines is the output from NEST. Mean values of the distributions
are indicated by arrow heads. (C) Run time of different simulators when simulating
20s of the Vogels-Abbott benchmark network. The dashed line indicates a real-
time simulation. (D) Zoom on the comparison of Auryn against NEST*, where a
minimal forward Euler solver was used to integrate the neuronal state variables.
(E) Run times of Nest and Auryn for 20s of benchmark simulation. Simulations
ran in parallel on a single machine. (F) Simulations ran distributed on four nodes
connected via Ethernet.
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benchmark is available with pyNN (Davison et al., 2009) which allowed us
to simulate the same network in Brian, NEST and Neuron.

The very same network was implemented using Auryn. The observed
network activity was comparable to the other simulators (Figure 5.2 A, B).
However, we also observed small differences (on the order of 0.5Hz) be-
tween the mean population firing rate in the NEST simulation and ob-
tained with Brian or Auryn. To check if such differences could be due to
the different underlying integration methods, we re-implemented the neu-
ron model in NEST using the forward Euler method (NEST*: we use the
asterisk to disambiguate the different integration methods). This change
indeed resulted in the same mean population firing rates in the simulations
performed with Brian, NEST* and Auryn. We further confirmed this re-
sult by comparing the rate distribution, and the distribution of the CV
ISI obtained with the different simulators (Figure 5.2 B), using a two sam-
ple Kolmogorov-Smirnov test (Auryn-NEST* (rate) D=0.0124, p=0.9678.
(CVISI) D=0.0252, p=0.2678; Brian-NEST* (rate) D=0.0119, p=0.9775,
(CVISI) D=0.0117, p=0.9804). This suggests that the observed differences
were indeed due to the different integration schemes and that the use of
single precisions values in Auryn has negligible effects.

In a next step we measured the execution times for the different sim-
ulators when running the network during 20s on a single core (Methods;
Figure 5.2C). We found that the Auryn code runs significantly faster than
the other simulators. Importantly Auryn runs roughly four times as fast
as real-time, whereas the other simulators are slower than real-time (with
the exception of NEST*). From the comparison of NEST and NEST* one
can also appreciate why comparing the simulators in their standard config-
uration is not necessarily a fair comparison. In the present example NEST
uses the computationally more expensive fourth order Runge-Kutta method,
which puts it far behind Auryn in terms of run times. NEST* on the other
hand achieves comparable run times, with Auryn being only a factor of
≈ 2.5 faster. We speculate that this difference is likely to come from the
use of single precision versus double precision variables for neuronal state
variables.

NEST and Neuron as well as our own code can be run in parallel by
using MPI. Since neuron was much slower in the single-core comparison, we
limited our study to a comparison of NEST* with our own code. In order
to compare run times when running parallel code with MPI, we evaluate
the run times of the same simulation on one of our servers (with a total
of 16 physical cores) while varying the numbers of cores used for the com-
putation (Figure 5.2E). Since we are interested in running simulations in
real-time or faster, we introduce the relative run time T (the total run time
divided by the simulated time) as a performance criterion. T equal to one
corresponds to real-time simulation, while a value smaller than one indi-
cates simulation speeds which are faster than real-time. When plotting the
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run time measurements for different numbers of active cores n, we observe
that both simulators exhibit comparable scaling behavior of ∝ 1

n . To see
whether the simulation speed could be further increased we now repeat the
same measurement when the code is run distributed over four nodes identi-
cal to the machine we used before (Methods). In this case the simulations
scale poorly and run times start to increase already for a low number of
cores (Figure 5.2F).

The fact that NEST and our own code show similar scaling and satura-
tion behavior suggests that there is a shared underlying principle, which is
presumably due to overhead in the inter-process communications.

5.3.3 A minimal run time model

To test this hypothesis and to understand the origin of the saturation we
study the scaling behavior in a simple model. We assume that the run time
T for simulating the network is the sum of the time Tsim spent on actual
simulation plus the time spent on inter-process communications Tsync

T = Tsim + Tsync

In an ideal parallel implementation Tsim scales as ∝ 1
n where n is the

number of cores that share the work. For small message sizes most MPI
implementations use either the Recursive Doubling or the Bruck algorithm
for the necessary All Gather operation that communicates the spikes from
one node to the other (Thakur et al., 2005). Both algorithms scale as ∝
β log(n) + γ n−1/n. Taken together we expect the run time T to scale as

T =
α

n
+ β dlog2 ne+ γ

n− 1

n
(5.4)

with only positive parameters α, β and γ. We can see immediately from
Expression (5.4) that it has a lower bound TLB > 0. This is the manifestation
of the plain fact that inter-process communication takes time. Simulations
cannot run faster than the time they spend on communication.

To see how well this simple model captures run time data we fit Expres-
sion (5.4) to the relative run times observed for the Vogels-Abbott bench-
mark when run on a single node (Figure 5.3 A). Most standard algorithms
for all-to-all collective communication with small message sizes (Bruck al-
gorithm and recursive doubling) perform best for process numbers that are
a power of two. We therefore limit our measurements to values of n which
are powers of two or their respective midpoints. We furthermore exclude
the data point at 16 cores (64 cores for the distributed runs) from the fit
because these cases did not leave a single core for the system, which could
influence the outcome of the time measurement.

When fitted to the single node data, Expression (5.4) yields the following
parameters α = 0.279±0.002, β = 0.0±0.0023 and γ = 0.016±0.007, which

99



Chapter 5. Speed-up limits in network simulations

0

0.1

0.2

0.3

0 8 16 24 32 40 48 56 64

T
[1
]

Num. of cores

4,000 cells at ≈14Hz

Local
Dist.

A

0

0.5

1

1.5

2

0 8 16 24 32 40 48 56 64

T
[1
]

Num. of cores

25,000 cells at ≈0.3Hz

Local
Dist.

B

0
1
2
3
4

α

V
al
u
e
[1
]

0

0.05

0.1

0.15

β γ

V
al
u
e
[1
]

Vogels-Abbott
25k cells 0.3Hz
25k cells 3.0Hz

C D

Figure 5.3 – Scaling behavior in Auryn. (A) Relative run times T for Vogels-
Abbott Benchmark distributed over multiple cores on a single machine (solid circles)
or distributed over a cluster of four nodes (triangles). Lines: RMS fit of Eq. (5.4)
to local (red) and distributed data (blue). (B) same as in A, but in a network of
25,000 neurons with average firing rates of 0.3Hz. Circles and red line: run locally
on a single node. Triangles and blue line: same network run distributed over four
nodes. (C) Bar plot of parameter α from fitting Expression. (5.4) to the run time
data in A (red), B (blue) and a third 25,000 network (dark gray) with a mean firing
rate of 3Hz and plastic synapses. (D) same as C but for parameters β and γ.
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are all in units of relative run time. We see that for 12 cores the time spent
on communication, characterized by β and γ is still significantly lower than
the time spent on the actual simulation code represented by α.

When the same code is run distributed over multiple machines, the ∝ 1
n

scaling behavior is broken (Figure 5.3 A). We again extract the following
parameters from the root mean square fit of Expression (5.4): α = 0.27 ±
0.01, β = 0.019±0.003 and γ = 0.07±0.02. One can observe that α remains
unchanged, while β is now significantly different from zero, which causes
the function (Eq. (5.4)) to rise again for increasing numbers of cores. The
increase in β and γ is due to the increased communication delays. Messages
between processes cannot be exchanged anymore via shared memory, but
have to travel over Ethernet to another physical machine. This takes time
and imposes a limit onto the achievable run time. The minimum run time
can be extracted from the plot or analytically from the fitted parameters.
The latter approaches yields Tmin = 0.15± 0.02 achieved in the range of 6-8
cores used.

To be able to interpret this value we measured the mean run time for
an All Gather for a message size comparable to that of the Vogels-Abbott
benchmark We found tAllGather ≈ 0.1ms. We may interpret this as the min-
imal time necessary for synchronization of all processes. Since the network
simulation has a minimum delay of 0.8ms after which all processes have
to synchronize, the speed-up of a simulation cannot be above a factor of
8 compared to real-time which imposes a lower bound on the relative run
time at Tlb = tAllGather

0.8ms = 0.125. This is only slightly smaller than Tmin. In
conclusion our findings suggest that starting from 6-8 cores communication
delays constitute the major share of the total run time (Tsync � Tsim).

To see whether these results generalize to other networks, we performed
further run time measurements for a larger network (Lütcke et al., 2013).
This network consists of 25,000 cells receiving fluctuating external input
(Figure 5.3 B, see Methods) with a mean population firing rate of 0.3Hz.
It thus generates less spikes per unit time than the Vogels-Abbott bench-
mark and therefore also exchanges smaller messages via MPI. The functional
shape of the run times can be well captured by Expression (5.4). When run
distributed over multiple nodes the run times of the 25,000 cell network do
not show a large difference between the local and the distributed case. The
best possible run time lies at T ≈ 0.25 which again is comparable to the
result from the Vogels-Abbott benchmark network.

We simulated a third network with 25,000 cells and plastic excitatory-
to-excitatory synapses (Zenke et al., 2013) (see next section) and fit Ex-
pression (5.4) to the run time values. All three networks have different
computational load which is reflected in the differences in the extracted val-
ues for α (Figure 5.3 C). However, values for β and γ which characterize the
communication latencies are comparable in all three cases.

Although the average number of spikes and therefore the average mes-
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Figure 5.4 – Scaling of a plastic network with STDP. (A) Relative run times
of a 25,000 cell network model (filled circles). The triangular points indicate run
times for the same network with plastic excitatory-to-excitatory synapses that are
subject to triplet STDP. The red (blue) solid line represents the outcome of an RMS
fit of Expression (5.4) to the data for the non-plastic (plastic) case. (B) Relative
difference of run times of the network from A with a naive continuous integration
of the presynaptic traces and the event-based implementation as a function of the
number of cores.

sage size in the two 25,000 networks differ by a factor of 10, the values for β
and γ do not show a significant difference. Since β represents the commu-
nication cost of the Bruck algorithm (Thakur et al., 2005) this could mean
that the lower bound TLB is approaching values which are governed by the
communication delays intrinsic to the hardware layer.

5.3.4 Computational cost of STDP

Auryn was developed to provide an efficient environment for simulating plas-
tic synapses in recurrent neural networks. To that end we are particularly
interested in simulating spike-timing-dependent plasticity (STDP) as it is a
form of plasticity commonly found in the brain (Markram et al., 1997; Zhang
et al., 1998; Bi and Poo, 1998, 2001; Markram et al., 2011). STDP can be
implemented efficiently in an event-based way where synaptic weights only
change when pre- or postsynaptic spikes occur (Gerstner and Kistler, 2002b;
Morrison et al., 2008). We were wondering how performance and scaling are
affected by introducing STDP in a network simulation.

We measured the run times of a medium size network simulation (25,000
cells, Methods) without plasticity and with triplet STDP (Pfister and Ger-
stner, 2006) at the excitatory-to-excitatory synapses. When run on a sin-
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gle core, the non-plastic (NP) network runs at about half real-time, while
the plastic (PL) network shows a run time increase by a factor of ≈ 2.3
(Figure 5.4 A). When run on multiple cores in parallel both networks show
comparable scaling and saturation behavior. On 64 cores the run time of
the PL network is only about TPL ≈ 1.6TNP. To investigate this in more
detail we now plot the relative run time difference χ defined as

χ =
TPL − TNP

TNP
(5.5)

as a function of the number of cores (Figure 5.4 B). This illustrates that
there is an initial drop in χ for n < 24 cores after which the fractional time
spent on plasticity starts to rise again slowly. The initial drop is presumably
linked to the larger amount of cache becoming available with increasing the
number of cores. The rise for higher numbers of cores is expected because
Auryn integrates copies of all presynaptic traces on all processes continu-
ously (Methods). This introduces redundant computation, which destroys
the ∼ 1

n scaling. Although the effect is small initially it becomes signifi-
cant for large numbers of parallel processes. Although in the present case
this only has a minor effect on the total run time, in some cases it can be-
come advantageous to reduce this redundant computation. To that end Au-
ryn supports to switch to event-based integration of the presynaptic traces
(Methods), which causes χ to converge towards a constant value of roughly
χ ≈ 0.4. Overall, both strategies allow the simulation of the plastic network
at about T ≈ 0.4.

We were wondering if the simulation of STDP can be sped up further
and what impact the implementation details of STDP have on the run time.
Auryn implements STDP in a very simple and straight forward way. Weight
updates are carried out at every pre- or postsynaptic spike times in a way
which only uses atomic operations. Other simulators, such as NEST use
a different strategy, in which weight updates are carried out at the arrival
times of presynaptic spikes only. Both approaches have their advantages
and their shortcomings (Methods).

To compare the performance of both simulations without implementing
new plasticity rules in NEST, we limited our study to code that already
existed Gewaltig and Diesmann (2007); Gewaltig et al. (2012). In partic-
ular we used two example simulations that come with the current NEST
release. Both simulations implement the same balanced random network
model based on work by Nicolas Brunel Brunel (2000). In one case all con-
nections are static whereas in the other case excitatory-to-excitatory con-
nections evolve according to a weight dependent STDP rule (Methods).

We created the same network model in Auryn. For a better compar-
ison we wrote an Auryn class with the same functionality as the NEST
poisson generator and implemented the same neuron model as used in
NEST. Network simulations were run for 20s simulated time with low learn-
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Figure 5.5 – Run times of a balanced network with plasticity in Auryn
and NEST. (A) Scaling behavior of the relative run time T for a classical balanced
network model Brunel (2000) when simulated in NEST (black) and Auryn (red).
The measurement was done for the non-plastic (NP) network and with multiplica-
tive STDP (PL). (B) Bar plot of the end point values in A. Single core (left), 32
cores (middle) and all 64 cores (right). Dashed line: real-time simulation. (C) Rel-
ative difference between run time of the plastic and non-plastic network for Auryn
(red circles) and NEST (blue triangles).
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ing rates to avoid that plasticity influences the firing statistics over the time
course of the simulation. The resulting network activity of both implemen-
tations was comparable at ≈ 43Hz population firing rate. We ran both im-
plementations distributed over four machines for varying numbers of cores.
The respective run times of the PL and NP configuration were recorded
(Figure 5.5 A), in which Auryn was integrating presynaptic traces using the
time-continuous approach. On a single core the addition of STDP caused
an increase of the run times by a factor of ≈ 2.5 for Auryn (≈ 4 for NEST,
Figure 5.5 B, left). Both implementations show good initial scaling behavior,
but saturate quickly (NP as well as PL configuration). When going from
32 to 64 cores run times only decreased marginally (Figure 5.5 B). Auryn
achieved real-time simulation speed for the non-plastic (NP) configuration
and took about twice as long when simulated with STDP (Figure 5.5 B).
The plastic simulation in NEST was still significantly slower (T ≈ 5) than
PL simulations in Auryn. We repeated this measurement for Auryn us-
ing the event-based strategy for presynaptic trace update and did not find
significant differences in run time (data not shown).

Overall this analysis shows that for medium size networks, Auryn’s sim-
ple approach to STDP is faster than the method NEST uses. At present it
is not clear if or how STDP implementations can be made more efficient to
speed up simulation speeds even further.

5.4 Discussion

In this paper we have shown that small or medium size recurrent net-
works with STDP can be simulated in, or close to, real-time if performance-
optimized code is used. We compared the results achieved with our in-house
code to NEST and found that the simulators show comparable scaling be-
havior when run in parallel on multiple cores and the same underlying inte-
gration scheme is used. In the case of parallel execution inter-process com-
munications constitute the limiting factor that prevents simulations from
running substantially faster than real-time. Importantly, when simulating
plastic networks with different forms of STDP these results still hold. In
particular we have shown that the overhead that is added to a network
simulation by forms of STDP scales well and is nearly negligible when sim-
ulations are run in parallel.

These results suggest that plasticity studies in medium size networks of
point neurons are limited intrinsically by communication delays of the inter-
process communication, when run on off-the-shelve hardware. In the present
study the best performance was achieved on a single powerful computer were
communication proceeded via shared memory. However, it is not clear at
what point the cost of an increased number of cores, which partly share
cache and memory resources, will outweigh its advantages. Large clusters,
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on the other hand, are only advantageous if they have low communication
latencies which is likely to be only achievable with specialized hardware. A
continuation of this study on such machines would be insightful.

When we interpret our results in the light of GPU computing (Richert
et al., 2011; Hoang et al., 2013), we may conclude that GPUs can only
provide an advantage if the communication between CPU and GPU can be
held at a minimum. This requires that not only the neurons, but also the
entire connectivity and plasticity to be implemented on the GPU. At present
it is not clear yet if this can be done efficiently for a wide variety of plasticity
rules.

In summary we have shown that real time simulations of plastic net-
works of point neurons are achievable with appropriate and highly opti-
mized software. However, at the same time increasing simulation speed
beyond 10×real-time is challenging due to limitations in the inter-process
communications.
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Conclusion

In this work we have shown that different forms of synaptic plasticity and
homeostasis serve different purposes and they can they can be coarsely clas-
sified according to the timescale they act on. Certain forms of Hebbian
plasticity in the brain such as STDP can be rapidly induced. To quantify
rapid, we used analytical methods to extract the effective timescales of plas-
ticity from triplet STDP (Pfister and Gerstner, 2006) which quantitatively
describes experimental data (Sjöström et al., 2001). By using methods from
dynamical systems theory we concluded that the required timescale of a
necessary compensatory mechanism needs to be faster than experimentally
observed homeostatic mechanisms which are widely believed to be respon-
sible for stabilizing Hebbian plasticity dynamics (Turrigiano et al., 1998;
Abraham and Bear, 1996; Bienenstock et al., 1982).

Heterosynaptic plasticity seems a promising candidate compensatory
mechanism (Chistiakova et al., 2014) and we have illustrated that spiking
recurrent networks endowed with triplet STDP and heterosynaptic plas-
ticity can successfully form and recall associative memories in form of cell
assemblies in the face of ongoing plasticity.

Other forms of plasticity, such as Hebbian forms of inhibitory plastic-
ity or other types of homeostatic plasticity, are intrinsically stable. They
mostly have to act on a much longer timescale to avoid canceling synaptic
changes which are desired. These processes seem to perform what is clas-
sically achieved in network models through manual parameter tuning. As
we have shown in simulations, inhibitory plasticity for instance, finely tunes
network dynamics to a point which would be difficult to achieve through
manual tuning. It seems only plausible that biological systems use similar
ways of efficiently controlling and refining their activity states in an on-line
way, because it allows the systems to adapt to internal or external changes,
which is not possible by simply relying on an initially frozen and finely tuned
parameter set.

It is clear that in this work we could only scratch the surface of the
wide range of experimentally observed (or unobserved) mechanisms involv-
ing plasticity and homeostasis. It will be an interesting avenue for future
studies to in a first step form a more complete theoretical understanding of
what the most important ingredients of plasticity mechanisms are to achieve
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a given learning task. The second step should be to see how these theoret-
ical requirements overlap with the rich underlying complexity of biological
synapses, their internal dynamics and their ways of interacting with the
network beyond the direct electrical signaling they relay.

First steps in this direction have been made from theoretical side (Clopath
et al., 2008; Fusi et al., 2005) and it will be useful to interpret these results
further within a network context which might necessitate the inclusion of
more global signals and factors Turrigiano (2012).
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Figure A.1 – Evolution of the population rate for metaplastic triplet
STDP model. (A) Temporal evolution of mean population rate for different
values of τ (η = 1). While the change in stability in the vicinity of τ crit = 166 s
can be understood from the mean field theory, which also predicts the observed
oscillations at criticality, the late destabilization of the curve τ = 150 s is not
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τ = 150 s and weights are initialized with the weights from a stable run (η = 6.25,
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initialization as in (A), but maximally allowed weights limited to wmax = 0.5. Light
blue: τ = 500 s, network falls silent at t ≈ 10 h. Purple: τ = 500 s, with w0 = 0.158
(the learning rate was unchanged), which reduces the initial excursion to low rates.
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A.2 Supplementary Text S1: Rate fluctuations

The approximation that κ is the fixed point of our plasticity rule is only
true in a rate model where all rates take their respective mean value. Here
we show that in the presence of rate fluctuations the actual fixed point is
shifted to higher values. Since a neuron receives many inputs at any moment
in time, we ignore fluctuations in the presynaptic rate, and focus on the
postsynaptic side. First we analyze the effect on the synaptic weights of a
single unit with fluctuating rate νi (

〈
ν2
i

〉
= ν2 + σ2). We will furthermore

neglect any fluctuations in ν̄i. For the purely additive learning rule weights
are stable on average if τw

〈
dw
dt

〉
= 0. Applying the temporal average to the

rate based learning rule

τw
dw

dt
∝ ννi

(
νi −

ν̄2
i

κ

)
(A.1)

and requiring it to be equal to zero gives

ν
〈
ν2
i

〉
− ν3

κ
〈νi〉 = 0 (A.2)

ν2 + σ2 − ν3

κ
= 0 (A.3)

ν = κ+
σ2

ν2
(A.4)

where we assumed ν > 0. Therefore the stable rate ν is always higher than
κ. This intuition breaks down if τ is chosen too short. For the case τν < 1
fluctuations in ν̄i become substantial.

By ignoring both correlations and fluctuations in the mean field model
systematic errors are introduced that underestimate the actual resulting
target rate.
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B.1 Annotated Protocol for Figure 3.2

The simulation protocol for Fig. 3.2 proceeded as follows:

Start: t = −1 min: The AI network dynamics of the original network Vogels
and Abbott (2005) without inhibitory plasticity. This phase serves as
a reference and is not shown.

4, A: t = 0 min: Inhibitory to excitatory synapses are turned to 0 efficacy.
The network is forced out of the AI regime and begins to fire at high
rates. Simultaneously, inhibitory plasticity is turned on.

4, B: t = 60 min: Inhibitory plasticity has restored AI activity.

4, C: t = 60 min, 5 s: The excitatory non-zero weights of the 2 designated
memory patterns are increased ad-hoc by a factor of 5. The neurons
of the subset begin to exhibit elevated and more synchronized activity.

4, D: t = 120 min: Inhibitory plasticity has successfully suppressed any
elevated activity from the pattern and restored the global background
state.

4, E: t = 120 min, 5 s: By delivering an additional, 1 s long stimulus as de-
scribed above to 25% of the cells within one memory pattern, the whole
pattern is activated. Activity inside the pattern stays asynchronous
and irregular, and the rest of the network, including the other pattern,
remains nearly unaffected.

Fig. S4 continues the protocol:

S4, F: t = 120 min, 11 s: The other (blue) memory pattern is activated with
a stimulus analogous to the one used in Fig. B.6.
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Figure B.1 – Inhibitory plasticity self-tunes balanced state in recurrent neural
networks. (a-b) Each panel shows the instantaneous firing rate of the 10,000 net-
work neurons laid out on a two dimensional grid. The 2,000 inhibitory neurons are
arranged on the right hand side of the square. (a) Network in its initial state where
half of the excitatory neurons receive strong inhibition (top) and the other half
receives no inhibition (bottom). (b) Same as (a), but after only 10s of plasticity.
(c) Same as (a,b) but after one hour of simulated time.

S4, G: t = 120 min, 17 s: Both memory patterns respond with elevated AI
activity to a stimulus to 25% of the cells, including the cells shared
between both patterns.

B.2 Robustness to parameter changes

To estimate the sensitivity of our results to parameter changes we ran a
range of additional simulations in which the initial state of the entire net-
work simulation was altered. To that end we first repeated the simulation
in Figure 3.2 (A), but this time only for half of the excitatory neurons in-
hibition was turned down while the other half received strong inhibition
(Fig. B.1 (a)). While it took little time to decrease the firing rates of the
neurons which were firing at initially high firing rates the turning down of
inhibition took substantially longer (Fig. B.1 (b)). The end result after one
hour of simulated time, however, remained unchanged. After one hour of
simulated time all neurons fired at low average firing rate and the initial
separation of the excitatory neurons was not evident from the activity any
more (Fig. B.1 (c)).

To characterize how robust this effect was with respect to changes in
the synaptic parameters we ran extensive parameter sweeps for which we
numerically characterized the final network activity state after one hour of
simulated time. To do so we acquired at the end of all our simulations the
CV ISI and the standard deviation of the population rate σRate, which we
used as a computationally cheap proxy for synchrony in the network.

While the CV ISI is an efficient measure of the regularity of individual
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spike trains, the magnitude of the fluctuations of the population rate give in-
sight about the synchrony of the local network activity. Taken together they
allowed us to efficiently decide whether a given network or sub-population
thereof can be characterized as in the asynchronous irregular (AI) regime
(Brunel, 2000). We characterized a network as to be in the AI regime when
the following condition was true:

(CV ISI > 1) ∧ (σRate < 5Hz) . (B.1)

The results of applying this criterion on various different parameters of
synaptic conductances are shown in Figures B.2 and B.3.

We were wondering how strong the emergence of asynchronous irregular
(AI) activity was dependent on the learning rate η used in the plasticity
model. To that end we repeated the complete range of simulations shown
in Figure 3.2 (A-E) for three different orders of magnitude of η. While
this scaled the timescale of the balancing effect of inhibitory STDP to take
place (Fig. B.4), no effect on the final network state was observed (data not
shown).

B.3 Supplementary Figures

115



Appendix B. Supplements to Chapter 3

0

0

gE
[g

]

8.06.04.02.08.08.06.04.02.0 6.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

2.0

4.02.0

8.06.04.02.0

1.5

1.0

0.5

2.0

AI

Pattern (ON)Pattern (OFF)No Pattern
σ

 R
ate [H

z]
ISI C

V
Fire R

ate [H
z] 

B

A

1second

20
0 

ne
ur

on
s

ρ [Hz] ρ [Hz] ρ [Hz]

gE
[g

]
gE

[g
]

gE
[g

]

ρ [Hz]

X XX

2

10

8

6

4

12

1.4

1.2

1.0

0.8

1.6

12

8

4
0

16

00

Figure B.2 – Emergence of asynchronous irregular activity is robust to changes in
conductance variables. (A) Network statistics at the end of the learning protocol
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as in Fig. 3.2 B. Pattern (OFF): Network after the introduction and balancing of
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(Eq. B.1) for (A). (C) Same as Fig. B.2 but with ḡEI held fixed. (D) AI state
criterion (Eq. B.1) for (C).

117



Appendix B. Supplements to Chapter 3

Time [s]
6000400020000

0
10
20
30

 R
at

e 
[H

z]

6004002000
0
10
20
30

 R
at

e 
[H

z]
6040200

0
10
20
30

 R
at

e 
[H

z]

η=10-4

η=10-3

η=10-2

C

B

A
ON1
OFF

Figure B.4 – Robustness to changes in the learning rate η. (A, B, C) Average
population firing rate (1s bins) recorded from a set of background neurons (black)
and from the red cell assembly (red) (as shown in Fig. 3.2). Top to bottom: Different
learning rates η spanning three orders of magnitude. The black arrow indicates time
of strengthening of synapses within the cell assemblies. Note rescaling of time axes.

Figure B.5 – Asynchronous net-
work state. (a) Spike raster of
excitatory cells over time. (b)
Currents received by a single neu-
ron in the network. Depolarizing
current (red) and hyper polariz-
ing current (blue). Net current
including leak current (black).
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B.4 Simulation parameters in tabular format

Table B.1 – Tabular description of network model (Fig. 3.2) following Nordlie
et al. (2009).

A Model Summary
Populations Two: excitatory, inhibitory
Topology —
Connectivity Random all-to-all connections
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed ab-

solute refractory time
Synapse model conductance based inputs (exponentially decaying PSC)
Plasticity Inhibitory plasticity
Input Fixed input current to all units
Input (Recall) Poisson spike trains to sub-population
Measurements Spike activity

B Populations
Name Elements Size
E Iaf neuron NE = 4NI

I Iaf neuron NI

C Connectivity
Name Source Target Pattern
EE E E Random with sparseness ε, weight ḡE ( χḡE for

connections in a pattern)
EI E I Random with sparseness ε, weight ḡE

IE I E Random with sparseness ε, weight plastic ḡIEij
II I I Random with sparseness ε, weight ḡII

D1 Neuron and Synapse Model
Name Iaf neuron
Type Leaky integrate-and-fire, exponential conductance based input
Subthresh-
old dy-
namics

τ dVi

dt = (V rest − Vi) +
(
gEi (V E − Vi) + gIi (V I − Vi) + Ib

)
× 1

gleak

V (t) = Vrest otherwise

Synaptic
dynamics

dgEi (t)

dt
= −g

E
i (t)

τE
+ ḡEδ(t− t∗i )

and
gIi (t)

dt
= −g

I
i (t)

τI
+ ḡIxij δ(t− t∗i )

Spiking If V (t− dt) < θ ∧ V (t) ≥ θ
1. set t∗ = t

2. emit spike with time-stamp t∗
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D2 Plasticity Model
Name Inhibitory Spike Timing Dependent Plasticity (iSTDP)
Type Symmetric iSTDP with a constant offset for presynaptic spikes
Acts on IE
Synaptic
traces

dxi
dt

= − xi
τSTDP

+ δ(t− t∗i )

Online
rule

Wij = Wij + η (xi − α)

for presynaptic spikes of neuron j at time tjf
and Wij = Wij + ηxj

for postsynaptic spikes at time tif

E Input
Type Description
Current input Fixed current I to all neurons
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Table B.2 – Simulation parameter summary for the network model (Fig. 3.2)
following Kunkel et al. (2011).

Populations
Name Value Description
NE 8000 Size of excitatory population E
NI 2000 Size of inhibitory population I

Connectivity
Name Value Description
ε 0.02 Probability of any connection (EE,EI,IE,II)
ḡ 3 nS Basic weight unit
ḡE ḡ Weight of all excitatory synapses (= 3 nS)
γ 10 Scaling factor for inhibitory weights
ḡII γḡ Weight of inhibitory to inhibitory synapses (= 30 nS)
ḡIE
ij Wij ḡ

II Weight of inhibitory to excitatory synapses (= Wij × 30 nS)

χ 5 Potentation factor of excitatory weights belonging to one or
more patterns

Neuron Model
Name Value Description
τ 20 ms Membrane time constant
Θ −50 mV Spiking threshold
V rest −60 mV Resting potential
V E 0 mV Excitatory reversal potential
V I −80 mV Inhibitory reversal potential
gleak 10 nS Leak conductance
Ib 200 pA Background current to each cell (unless stated otherwise)
τref 5 ms Absolute refractory period

Synapse Model
Name Value Description
τE 5 ms Decay constant of AMPA-type conductance
τI 10 ms Decay constant of GABA-type conductance

Plasticity Model
Name Value Description
τSTDP 20 ms Decay constant of (pre and post) synaptic trace
η 1× 10−4 Learning rate
α 0.12 Presynaptic offset
Wmin 0 Minimum inhibitory synaptic weight
Wmax 10ḡII Maximum inhibitory synaptic weight
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Supplements to Chapter 4

C.1 Supplementary figures
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Figure C.1 – Firing rates are bistable under reset triplet and depend on the
number of presynaptic contacts. (a) Mean firing rate over time of a 100 postsynaptic
integrate-and-fire neurons receiving 100 random spike trains from a population of
1000 Poisson processes (10Hz) via synapses with triplet STDP and heterosynaptic
plasticity. Different colors signify three different initial conditions of the afferent
synaptic weights. (b) End point firing rates at t = 600s vs initial firing rates
(t = 10s) from (a). (c) Same as (a) but for a single initial weight value and varying
numbers of connections (fixed connection probability between presynaptic Poisson
neurons and postsynaptic cell of 10%). (d) End point firing rates at t = 600s
vs initial firing rates (t = 10s) from (a). (e) End point firing rates at t = 600s
vs number of afferent connections for the cluster at low rates in (d). Pearson’s
correlation coefficient is denoted by letter r. (f) End point firing rates at t = 600s
vs number of afferent connections for the cluster at high rates in (d).
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Figure C.2 – Assembly structure does not reveal itself immediately from the
heterogeneous excitatory-to-excitatory weight matrix. (a) Small section of the
excitatory-to-excitatory weight matrix for 200 neurons from simulation in Fig-
ure (C.3) at t = 2h. Point size indicates relative strength of connections (arbi-
trary units). (b) Histogram of weight strength w in the excitatory weight matrix.
(c) Histogram of reference weight strength w̃. (d) Scatter plot of reference weight
values w̃ vs synaptic weight w.
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Figure C.3 – Unstructured input weights and homeostatic regulation of LTD rate
yields formation of cell assemblies and working memory. (a) Top panel: Spike raster
of network activity after 2h of learning. Stimulation times and stimulus identity
are indicated by colored bares at the top of the plot. Bottom panel: Population
firing rate of cell assemblies corresponding to the four stimuli. (b) Histograms of
network spike statistics acquired during initial activity shown in (a). Top: Firing
rate, bottom: CV ISI. (c) Like (a), with external stimulation enabled. (d) Same as
(a,c) after about one hour of simulation. (e) Same as (d) but for interval marked
in (d). (f) Same as (d) but with increased inter-stimulus-interval (TOff = 20s). (g)
Histogram showing the number of stimulus presentations at t = 1h. (h) Network
neurons laid out on 2D grid with stimulus preference indicated in color. (i) Bar plot
displaying the fraction of neurons coding for a specific stimulus (black: no stimulus
preference). (j) Overlap between all pairs of stimulus activity. (k) Overlap of
stimulus evoked network activity states. (l) Receptive fields of 10 randomly selected
neurons within the network. (m) Mean weight strength between neurons according
to their preferred stimulus.
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Figure C.4 – Network states are associative and serve as working memory in the
network with homeostatic metaplasticity. (a) Top icons: Distorted cues fed into
the network (black bars below that code for time and duration of the stimulation).
Middle panel: Spike raster of network activity (only every fourth spike of every
fourth neuron shown for clarity). Bottom panel: Population rate of the four ac-
quired network states. (b) Population averaged peristimulus time histograms of
the four relevant readout populations for all different distorted stimuli presented
(keys on the right).
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Figure C.5 – Failure modes arising from blocking single plasticity mechanisms.
(a,b) Top left: spike raster (all excitatory neurons) with stimulation interval and
stimulus identity on top (colored bars). Bottom left: Activity in putative memory
patters as determined from Figure 4.4. Histograms (from top left to bottom right):
1) Neural firing rates determined over the interval shown in the raster plot. 2)
Relative proportion of active (at least one spike during a one hour interval) and
silent neurons. 3) CV ISI over entire interval shown in raster plot on the left. 4)
Excitatory synaptic weight distribution as determined at the end of the simulation
(after 300s for (a), 2h otherwise). (a) Blocking of homeostatic regulation of LTD
rate in a network without initially structured afferent connections (cf. C.3). The
network fails to develop selectivity. (b) Blocking heterosynaptic plasticity causes
rapidly increasing firing rates without learning or delay activity (simulation stopped
after 300s).
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Figure C.6 – Failure modes arising from blocking single plasticity mechanisms.
Same panels as in Fig. C.5. (a) Blocking inhibitory plasticity still allows the network
to develop delay activity. Assembly size and steady state population firing rate
depends on the fixed inhibitory weight (not shown). (b) Blocking of transmitter-
triggered plasticity causes many neurons to fall and remain silent.
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Figure C.7 – A slow adaptation current causes spontaneous switching between
attractors. (a) Spike raster of 1024 excitatory neurons with a slow spike triggered
adaptation current with time a time constant of 20s (cf. Pozzorini et al. (2013)
and methods). At around 139min the currently active assembly (green) is switched
by a brief external stimulus (red). All other state changes are spontaneous. (b)
Histogram of firing rates averaged over the interval marked with a black bar in (a).
(c) Histogram of coefficient of variation of the inter-spike-interval distribution (CV
ISI) averaged over the interval marked in (a).
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C.2 Tabular network description

Table C.1 – Tabular description of network model (Nordlie et al., 2009).

A Model Summary
Populations Three: excitatory, inhibitory, Poisson input
Topology —
Connectivity Random sparse connectivity (fixed probability)
Neuron model Leaky integrate-and-fire, relative and absolute refractory pe-

riod, spike triggered adaptation
Synapse model Conductance based, exponentially decaying (AMPA,

GABA), and double exponential (NMDA)
Plasticity —
Input Poisson input with additional rate coded input patterns
Measurements Spike activity, synaptic efficacy (continuously of a subset of

synapses and of all synapses at the end of a simulation)

B Populations
Name Size Elements
E 4096 Adaptive IF neuron
I 1024 IF neuron
Stim 4096 Poisson stimulus population

C Connectivity
Name Source Target Pattern
EE E E Fixed prob. ε = 0.1, w = 0.1, excitatory, plastic
EI E I Fixed prob. ε = 0.1, w = 0.2, excitatory
IE I E Fixed prob. ε = 0.1, w = 0.1, inhibitory, plastic
II I I Fixed prob. ε = 0.1, w = 0.2, inhibitory
StimE Stim E Fixed prob. ε = 0.05, w = 0.2, excitatory, plastic

For all above: Fixed delay D = 0.8ms
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D1 Neuron and Synapse Model
Name AIF neuron
Type Adaptive leaky integrate-and-fire, absolute and relative refrac-

toriness, conductance input, spike triggered adaptation, AMPA
and GABA-like conductances exponentially decaying, double ex-
ponential NMDA-like conductance

Subthr.
dynamics

τm d
dtUi = (U rest − Ui) + gexc

i (t)(U exc − Ui) + ginh
i (t)(U inh − Ui)

Cond. gexc
i (t) = αgampa

i (t) + (1− α)gnmda
i (t)

ginh
i (t) = ggaba

i (t) + ga
i (t) + gb

i (t)︸ ︷︷ ︸
Adaptation

Excitation d
dtg

ampa
i = − gampa

i

τampa +
∑
j∈exc xj(t)uj(t)wijSj(t) for the definition

of short term plasticity variables xj and uj see D2 below.
τnmda d

dtg
nmda
i = −gnmda

i + gampa
i

Inhibition d
dtg

inh
i = − ginhi

τgaba +
∑
j∈inh wijSj(t)

Adaptation d
dtg

a
i (t) = − ga

τa + ∆aSi(t)
gb(t) = 0 except in simulations with adaptation on multiple

timescales: d
dtg

b
i (t) = − gb

τb + ∆bSi(t)

Threshold τ thr d
dtϑi(t) = −ϑi(t) + ϑrest

Spiking If Ui > ϑi(t) then Si(t)→ Si(t)+ δ(t) (emit a spike) and ϑi(t)→
+50mV and Ui → U rest

Name IF neuron
Type The non-adaptive inhibitory neurons were implemented identi-

cally except of the omission of the adaptation terms gai = gbi = 0.

D2 Plasticity Model
Name Short term plasticity following Tsodyks and Markram (1997)
Type Depressing and facilitating short term dynamics
Acts on EE,EI,Stim,E
Dynamics d

dt
xj(t) =

1− xj(t)
τd

− uj(t)xj(t)Sj(t)

d

dt
uj(t) =

U − uj(t)
τ f

+ U (1− uj(t)) Sj(t)
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D3 Plasticity Model
Name Plasticity rule for excitatory synapses
Type STDP rule with pre and post offset terms and slower consolida-

tion dynamics
Acts on EE and StimE

Synaptic
traces

d
dtz

pre
j (t) = − z

pre
j (t)

τpre + Sj(t) with presynaptic spike train Sj(t).

d
dtz

post
i (t) = − z

post
i (t)

τpost + Si(t) with postsynaptic spike train Si(t).
d
dtz

post2
i (t) = − z

post2
i (t)

τpost2 + Si(t)
Online
rule d

dt
wij = Si(t)

(
Azpre

j zpost2
i (t)− β

(
zpost
i (t)

)3
(wij − w̃ij)

)
− Sj(t)

(
Bzpost(t)i − δ

)
Consolida-
tion τ cons d

dt
w̃ij = −w̃ij +wij−P w̃ij(t)

(
wp

2
− w̃ij(t)

)
(wp − w̃ij(t))

which is integrated with step size of 1.2s.
Meta-
plasticity

Where this is mentioned explicitly we allow B to have a slow time
dependence (cf. Bienenstock et al. (1982); Pfister and Gerstner
(2006)):

Bi(t) =

{
ACi(t) for Ci(t) ≤ 1

A otherwise

with
d

dt
Ci(t) = −Ci(t)

τhom
+
(
zht
i (t)

)2

D4 Plasticity Model
Name Inhibitory Spike Timing Dependent Plasticity (iSTDP)
Type Symmetric iSTDP with a constant offset for presynaptic spikes

and a global modulation
Acts on IE

Synaptic
traces

d
dtzi(t) = − zi(t)

τ iSTDP + Si(t)

Secreted
factor

G(t) = H(t)− α with d
dtH(t) = −H(t)

τH +
∑
i∈exc Si(t)

Online
rule

d

dt
wij(t) = η G(t) ((zi(t) + 1)Sj(t) + zj(t)Si(t))
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E Input
Name Stimulus group
Type Rate coded Poisson input
Size 4096 Poisson neurons
Firing rates νi = νbg + νscale ξi(t)
Input pattern

ξi(t) =

{
0 no active input pattern

ξµi if pattern µ is active

where the ξµi are flattened 64 × 64 grayscale images normal-
ized to [0,1]. Only a single pattern can be active at a time.
A pattern stays active during a finite period drawn from an
exponential distribution with mean TOn. Each pattern ac-
tivation is followed by a period of inactivity with a duration
drawn from another exponential distribution with mean TOff .

F Measurements
Type Description

Spike activity for raster and activity plots and weight matrices at the
end of the simulation.
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Table C.2 – Simulation parameter summary of network model.

Populations
Name Value Description
NE 4096 Size of excitatory population E
NI 1024 Size of inhibitory population I
NStim 4096 Size of external population Stim

Connectivity
Name Value Description
ε 0.1 Probability of connection (EE,EI,IE,II)
εStim 0.05 Probability of connection (StimE)
w̃ 0.0 Initial reference weight for all connections
wEE 0.1 Initial excitatory weight
wEI 0.2 Excitatory weight
wIE 0.15 Initial inhibitory weight
wII 0.2 Inhibitory weight
wStimE 0.5 Initial excitatory weight

Neuron Model
Name Value Description
τ 20 ms Membrane time constant
U rest −60 mV Resting potential
U exc 0 mV Excitatory reversal potential
U inh −80 mV Inhibitory reversal potential
αE 0.2 AMPA/NMDA ratio (excitatory population)
αI 0.3 AMPA/NMDA ratio (inhibitory population)
τampa 5ms AMPA decay time constant
τgaba 10ms GABA decay time constant
τnmda 100ms NMDA decay time constant
τa 100ms Adaptation time constant
∆a 0.1 Adaptation strength
τb 20s Slow adaptation time constant
∆b 5× 10−4 Slow adaptation strength
τ thr 2ms Threshold time constant
ϑrest -50mV Threshold resting value
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Short term plasticity model (excitatory synapses)
Name Value Description
τd 200ms Depression time constant
τ f 600ms Facilitation time constant
U 0.2 Initial release probability parameter

Plasticity Model (excitatory synapses)
Name Value Description
τpre 20ms Presynaptic trace for excitatory plasticity
τpost 20ms Postsynaptic trace for excitatory plasticity
τpost2 100ms Slow postsynaptic trace for excitatory plasticity
A 1× 10−3 LTP rate
B 1× 10−3 LTD rate (in simulations without metaplasticity)
δ 2× 10−5 Transmitter triggered plasticity strength
β 0.05 Heterosynaptic plasticity strength parameter
τ cons 20min Consolidation time constant
wp 0.5 Upper fixed point of reference weight potential
P 20 Potential strength parameter
τhom 20min Metaplasticity time constant (only designated simulations

with metaplasticity)
τht 100ms Activity trace time constant for metaplasticity

Plasticity Model (inhibitory synapses)
Name Value Description
τ iSTDP 20ms STDP trace time constant
γ 4Hz Target population rate
τH 10s Secreted factor time constant
η 2× 10−5 Learning rate

Stimulus Model
Name Value Description
νbg 10Hz Background firing rate
νscale 35Hz Maximum rate increase
TOn 1s Mean stimulus-on period
TOff t < 1h 2s Mean stimulus-off period
TOff t ≥ 1h 20s Mean stimulus-off period (unless stated otherwise)

C.3 Derivation of the moments of a synaptic trace
for Poisson firing statistics

We can describe the probability flux of a synaptic trace z defined by the ordinary
differential equation

dz

dt
= − z

τ
+ aS(t) (C.1)

with time constant τ and spike train S(t) by the following partial differential equa-
tion
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C.3. Derivation of the moments of a synaptic trace for Poisson
firing statistics

n 〈zn〉
1 λτ

2 1
2λτ (1 + 2λτ)

3 1
6λτ

(
2 + 9λτ + 6λ2τ2

)
4 1

12λτ
(
3 + 25λτ + 36λ2τ2 + 12λ3τ3

)
5 1

60λτ
(
12 + 175λτ + 425λ2τ2 + 300λ3τ3 + 60λ4τ4

)
Table C.3 – The first five moments of a synaptic trace under the assumption of
Poisson firing with rate λ where we assumed a jump size a = 1.

∂tp(z, t) =
1

τ
∂z(zp(z, t))− λp(z, t) + λp(z − a, t) (C.2)

=
1

τ
p(z, t) +

z

τ
∂zp(z, t)− λp(z, t) + λp(z − a, t) (C.3)

where the terms involving λ describe the sink and source terms that capture the
jumps of size a caused by spikes at rate λ.

By now requiring stationary ∂tp = 0 we have

z
d

dz
p(z) = −p(z) + λτ p(z)− λτ p(z − a) (C.4)

We now compute the Laplace transform of the left hand side of Eq. (C.4):

ˆ ∞
0

dz e−szz
dp

dz
=

[
ze−szp

]∞
0
−
ˆ ∞

0

dz
d

dz

(
e−szz

)
p (C.5)

= −
ˆ ∞

0

dz p
(
e−sz − sz e−sz

)
(C.6)

= −p̄(s) + s

ˆ ∞
0

dz p ze−sz (C.7)

= −p̄(s)− s d
ds
p̄(s) (C.8)

which we now insert into Eq. (C.4):

− p̄− sdp̄
ds

= −p̄+ λτp̄− λτ e−sap̄ (C.9)

dp̄

ds
= −λτ 1− e−sa

s
p̄ (C.10)

and therefore p̄(s) = exp
(
−λτ

´ s
0

1−e−sa

s′ ds′
)

. The moments µn of z are then given

by

µn = (−1)
n

lim
s→0

dn

dsn
p̄(s) . (C.11)
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Appendix D

Supplements to Chapter 5

D.1 Network details for Vogels-Abbott Benchmark

Table D.1 – Tabular description for Vogels-Abbott Benchmark following Nordlie
et al. (2009).

A Model Summary
Populations Three: excitatory, inhibitory, Poisson input
Topology —
Connectivity Random sparse connections
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed ab-

solute refractory time (voltage clamp)
Synapse model Exponentially decaying AMPA and GABA conductances

and δ-conductance pulses (discontinuous jumps)
Plasticity —
Input Inital poisson input (50ms) to prime/start the network
Measurements Spike activity

B Populations
Name Size Elements
E 3200 IF neuron
I 800 IF neuron
Ext 200 Poisson neurons

C Connectivity
Name Source Target Pattern
EE E E Random sparse P, probability of connection ε =

0.02 weight w = 0.4, excitatory
EI E I Random sparse (ε = 0.02), w = 5.1, inhibitory
IE I E Random sparse (ε = 0.02), w = 0.4, excitatory
II I I Random sparse (ε = 0.02), w = 5.1, inhibitory
Ext Ext E Random sparse (ε = 0.02), w = 0.4, excitatory

All connections have a delay D = 0.8ms



Appendix D. Supplements to Chapter 5

D1 Neuron and Synapse Model
Name IF neuron
Type Leaky integrate-and-fire, exponential conductance based input
Subthreshold
dynamics

If not refractory (t > t∗ + τref):

τm dUi
dt

= (U rest − Ui) + gexc
i (t)(U exc − Ui) + ginh

i (t)(U inh − Ui)

else:
Ui = Urest

Synaptic
dynamics

dgexc
i

dt
= −g

exc
i

τ exc
+
∑
j∈exc

wijSj(t)

and
dginh
i

dt
= −g

inh
i

τ inh
+
∑
j∈inh

wijSj(t)

Spiking If Ui > Θ ∧ t > t∗ + τref set t∗ = t

E Input
Type Description
Poisson neurons Fixed homogenous rate νext = 10

F Measurements
Type Description

Spike activity for raster plots. Run time of simulation (excluding time
for setup and saving data).
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Table D.2 – Simulation parameter summary for B.1 Network details for Vogels-
Abbott Benchmark following Kunkel et al. (2011).

Populations
Name Value Description
NE 3200 Size of excitatory population E
NI 800 Size of inhibitory population I
NExt 200 Size of Poisson population Ext

Connectivity
Name Value Description
ε 0.02 Probability of any connection (EE,EI,IE,II)
wEE 0.4 Weight excitatory→excitatory
wEI 0.4 Weight excitatory→inhibitory
wIE 5.1 Weight inhibitory→excitatory
wII 5.1 Weight inhibitory→inhibitory
wExt 0.4 Weight excitatory→excitatory

Neuron Model
Name Value Description
τ 20 ms Membrane time constant
Θ −50 mV Spiking threshold
U rest −60 mV Resting potential
UE 0 mV Excitatory reversal potential
U I −80 mV Inhibitory reversal potential
τref 5 ms Absolute refractory period

Synapse Model
Name Value Description
τE 5 ms Decay constant of AMPA-type conductance
τI 10 ms Decay constant of GABA-type conductance
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D.2 Network details for Brunel network

Table D.3 – Tabular description for Brunel network following Nordlie et al. (2009).

A Model Summary
Populations Three: excitatory, inhibitory, Poisson input
Topology —
Connectivity Random convergent connections
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed ab-

solute refractory time (voltage clamp)
Synapse model δ-current pulses (discontinuous voltage jumps)
Plasticity —
Input Independent Poisson input
Measurements Spike activity

B Populations
Name Size Elements
E 8000 IF neuron
I 2000 IF neuron
Ext Poisson generator

C Connectivity
Name Source Target Pattern
EE E E Random convergent (CE → 1), w = 0.1mV
EI E I Random convergent (CE → 1), w = 0.1mV
IE I E Random convergent (CI → 1), w = −0.5mV
II I I Random convergent (CI → 1), w = −0.5mV

For all above: CE = 800, CI = 200 Delay D =
0.8ms



D.2. Network details for Brunel network

D Neuron and Synapse Model
Name IF neuron
Type leaky integrate-and-fire, exponentially decaying conductance in-

put
Subthr.
dynamics

If not refractory (t > t∗ + τref):

dUi
dt

=
1

τm
(U rest − Ui) + wxE

∑
j∈E

Sj(t) + wxI

∑
j∈I

Sj(t)

else: Ui = Urest

Spiking If Ui > Θ ∧ t > t∗ + τref set t∗ = t
STDP
(only simu-
lations with
plasticity)

dw(t)

dt
= λ

(
1− w(t)

wmax

)
z+
j (t)Si(t)− λα

w(t)

wmax
z−i (t)Sj(t)

if wij < 0 then wij → 0
if wij > wmax then wij → wmax

Synaptic
traces

dzxn
dt = − z

x
n

τx + Sn(t)

E Input
Type Description
Poisson generator Independent Poisson input at fixed rate νext = 20kHz

F Measurements
Type Description

Spike activity for raster plots. Run time of simulation (excluding time
for setup and saving data).
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Table D.4 – Simulation parameter summary for B.1 Network details for Brunel
network following Kunkel et al. (2011).

Populations
Name Value Description
NE 8000 Size of excitatory population E
NI 2000 Size of inhibitory population I

Connectivity
Name Value Description
ε 0.1 Probability of any connection (EE,EI,IE,II)
wEE 0.1mV excitatory→excitatory
wEI 0.1mV excitatory→inhibitory
wIE −0.5mV inhibitory→excitatory
wII −0.5mV inhibitory→inhibitory
wExtE 0.1mV Poisson Generator→excitatory
wExtI 0.1mV Poisson Generator→inhibitory

Neuron Model
Name Value Description
τ 20 ms Membrane time constant
Θ −50 mV Spiking threshold
U rest −60 mV Resting potential
UE 0 mV Excitatory reversal potential
U I −80 mV Inhibitory reversal potential
τref 2 ms Absolute refractory period

Plasticity Model
Name Value Description
λ 1× 10−9 Learning rate
α 2.02 Relative strength of LTD
wmin 0.0mV Minimum weight
wmax 0.3mV Maximum weight
τ+ = τ− 20ms STDP time constant
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D.3 Network details for Plastic 25,000 cell net-
work at 3Hz

For a more detailed description see Chapter 2 or Zenke et al. (2013).

Table D.5 – Tabular description for 25k cell network Nordlie et al. (2009).

A Model Summary
Populations Three: excitatory, inhibitory, Poisson input
Topology —
Connectivity Random sparse connections
Neuron model Leaky integrate-and-fire, moving voltage threshold, absolute

and relative refractory time)
Synapse model Exponentially decaying AMPA, GABA and a slow NMDA

conductances. Synaptic input produces δ-conductance
pulses (discontinuous jumps) in AMPA and GABA conduc-
tances.

Plasticity —
Input Poisson input from a population of input units
Measurements Spike activity

B Populations
Name Size Elements
E 20000 IF neuron
I 5000 IF neuron
Ext 2500 Poisson neurons

C Connectivity
Name Source Target Pattern
EE E E Fixed probability ε, w = 0.16, excitatory
EI E I Fixed probability ε, w = 0.16, excitatory
IE I E Fixed probability ε, w = 1, inhibitory
II I I Fixed probability ε, w = 1, inhibitory
Ext Ext E Fixed probability ε, w = 0.16, excitatory

For all connections: delay D = 0.8ms, probability
of connection ε = 0.05
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D Neuron and Synapse Model
Name IF neuron
Type leaky integrate-and-fire, exponentially decaying conductance in-

put from AMPA and GABA conductances plus a slowly rising
and NMDA current with 100ms decay time (voltage dependence
ignored)

Subthr.
dynamics

τm dUi
dt

= (U rest − Ui) + gexc
i (t)(U exc − Ui) + ginh

i (t)(U inh − Ui)

Cond. dy-
namics

gexc
i (t) = αgampa

i (t) + (1− α)gnmda
i (t)

Excitation

dgampa
i

dt
= −g

ampa
i

τampa
+
∑
j∈exc

wijSj(t)

τnmda dg
nmda
i

dt
= −gnmda

i + gampa
i

Inhibition
dginh

i

dt = − ginhi

τgaba +
∑
j∈inh wijSj(t)

Thr. dyn. τ thr dϑi

dt = ϑrest − ϑi
Spiking If Ui > ϑ then t∗ = t and ϑ→ +50mV and Ui → U rest

Triplet
STDP

dwij
dt

= ηw0A
+ z+

j (t) zslow
i (t− ε)Si(t)− ηw0A

−
i (t) z−i (t)Sj(t)

and A−i (t) = A+τ+τslow

τ−κ ν̄i(t)
2 if wij < 0 then wij → 0

if wij > wmax then wij → wmax

Synaptic
traces and
hom. rate
estimate

dzxn
dt

= − z
x
n

τx
+ Sn(t) and τ

dν̄

dt
= −ν̄ + Sn(t)

E Input
Type Description
Poisson neurons Fixed rate νext = 2

F Measurements
Type Description

Spike activity for raster plots. Run time of simulation (excluding time
for setup and saving data).
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Table D.6 – Simulation parameter summary for B.1 Network details for 25k cell
network following Kunkel et al. (2011).

Populations
Name Value Description
NE 20000 Size of excitatory population E
NI 5000 Size of inhibitory population I
NExt 2500 Size of external Poisson neuron population

Connectivity
Name Value Description
ε 0.05 Probability of any connection (EE,EI,IE,II,Ext)
wEE w = 0.16 excitatory→excitatory
wEI w = 0.16 excitatory→inhibitory
wIE w = 1 inhibitory→excitatory
wII w = 1 inhibitory→inhibitory
wExt w = 0.16 Poisson neurons→excitatory

Neuron Model
Name Value Description
τ 20 ms Membrane time constant
U rest −60 mV Resting potential
UE 0 mV Excitatory reversal potential
U I −80 mV Inhibitory reversal potential
ϑrest −50mV Threshold value at rest
τ thr 5ms Time constant of threshold dynamics
τampa 5ms AMPA conductance decay time constant
τnmda 100ms NMDA conductance decay time constant
τgaba 10ms GABA conductance decay time constant
α 0.5 Ratio between AMPA and NMDA conductance

Plasticity Model
Name Value Description
η 6.25 Relative learning rate
A+ 6.5× 10−3η LTP strength
τ+ 16.8ms Trace time constant LTP
τ+ 33.7ms Trace time constant LTD
τ slow 114ms Long trace time constant LTP
wmax 1 Maximum weight
κ 3Hz Target rate
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consolidation: A model of early and late long-term-potentiation and depression.
PLoS Comput Biol, 4(12):e1000248, 2008.
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